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Overview

* The protein inference problem
* |soforms and protein groups
* Problem definition

* Protein inference algorithms
* ProteinProphet

* Protein false discovery rates
e Difference between PSM FDR and protein FDR
* Computing protein FDRs
* MAYU
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Identifying Proteins

* |dentification methods so far only identify peptide-
spectrum matches (PSMs)
e Search a database

e Return a ranked list of PSMs with associates scores

* PSM false discovery rates (FDRs) can be computed
through a target-decoy approach

* An FDR of 1% would mean that 1% of the PSMs with a
score above the threshold are expected to be incorrect

 Note that this is a statement on the individual PSM, not
per peptide or protein!



Identifying Proteins

Each PSM above the threshold contributes
* a match of a spectrum to a peptide
* a match of a peptide to a protein
Peptides are not necessarily unique!
Length distribution of observed peptides deviates from theoretical
distribution: short peptides (length 6 and shorter) are usually not

observed
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Uniqueness

* If we are interested in proteomics (in contrast to peptide
identification in metabolomics, MHC ligandomics etc.),
we want to quantify proteins

* Non-unique peptide sequences can stem from different
proteins

* Obviously, unigueness depends on the chosen database

* Uniqueness becomes more likely for longer peptide
sequences
e Reasons for non-uniqueness

 Chance hits
e Different isoforms

* Conserved regions shared within a protein family



Uniqueness
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* Searching an appropriate (non-redundant) database is thus preferable

» Reference databases (SwissProt) usually contain few degenerate (non-unique)

tryptic peptides above a mass of 750 Da

* Problem: isoforms of proteins/splice variants!

Nesvizhskii A |, Aebersold R Mol Cell Proteomics 2005;4:1419-1440.



Uniqueness
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Protein Isoforms

* NextProt Release 3.0.20
e 20,140 human proteins

* 39,565 sequences resulting from alternative isoforms
* On average 2.96 different splice variants for each protein sequence
* Some proteins have a much larger number of variants

* Resolving the different isoforms is only possible, if peptides crossing the right
exon boundaries are observed

NextProt Release 3.0.20, 2013-11-01, http://www.nextprot.org/db/statistics/release?viewas=numbers



Protein Isoforms

nex't pr ot Home Recentactivites + 4 My favorites + [ Mylabels + Downloads
BETA 5
prOteln 4 Last Search
Protein v
Function PDE9A » High affinity cGMP-specific 3',5'-cyclic phosphodiesterase 9A [EC 3.1.4.35] &
Medical Gene name: PDESA extend overview 22 m
Expression Family name: Cyclic nucleotide phosphodiesterase » PDES
Interactions One or more isoforms of this protein have been shown to exist at protein level
Localisation
Sequence
) Displayed isoform: PDESA1 change isoform
Proteomics
Structures PDESA1 PDEJA1
e PDE9A2 PDE9A2
Gene PDESA3
Exons PDE9A4 PDE9A4
Identifiers PDESAS PDESAS
PDESAG PDESAG
References
PDESA7
Curated publications (13)
PDESAS PDESAS
Additional publications (6)
PDESA10
Patents (0)
PDESA11
Submissions (3)
PDESA12 PDESA12
Web resources (0)
PDESA13 PDESA13 PDESA13
PDESA16
PDESA17 PDESA17
PDESA18 PDESA18
PDE9A21 PDESA21

* phosphodiesterase 9A has 16 documented isoforms

* Peptides stemming from the second half of the sequence are entirely indistinguishable
between isoforms http://www.nextprot.org/db/entry/NX_076083/structures



Protein Isoforms

A

Gene CAPZB

>IPI00026185 IPI:IPI00026185.4|Swiss-Prot:P47756-1|ENSEMBL:ENSP00000264202
Tax_Id=9606 Splice isoform 1 of P47756 F-actin capping protein beta subunit
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>IPI00218782 IPI:IPI00218782.1|Swiss-Prot:P47756-2|ENSEMBL:ENSP00000264203
Tax Id=9606 Splice isoform 2 of F-actin capping protein beta subunit
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Nesvizhskii A |, Aebersold R Mol Cell Proteomics 2005;4:1419-1440.
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Protein Isoforms
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MESSPFNRROQWTSLSLRVTAKELSLVNKNKSSAIVEIFSKYQKAAEETNMEKKRSNTENLSQHFRKGT LTVLKKKWENPG
LGAESHTDSLRNSSTEIRHRADHPPAEVTSHAASGAKADQEEQIHPRSRLRSPPEALVOGRYPHIKDGEDLKDHSTESKK

MENCLGESRHEVEKSEISENTDASGKIEKYNVPLNRLKMMFEKGEPTQTKILRAQSRSASGRKISENSYSLDDLEIGPGQ
LSSSTFDSEKNESRRNLELPRLSETSIKDRMAKYQAAVSKQSSSTNYTNELKASGGEIKIHKMEQKENVPPGPEVCITHQ
EGEKISANENSLAVRSTPAEDDSRDSQVKSEVQQPVHPKPLSPDSRASSLSESSPPKAMKKFQAPARETCVECQKTVYPM
ERLLANQQVFHISCFRCSYCNNKLSLGTYASLHGRIYCKPHFNQLFKSKGNYDEGFGHRPHKDLWASKNENEEILERPAQ
LANARETPHSPGVEDAPIAKVGVLAASMEAKASSQQEKE DKPAETKKLRIAWPPPTELGSSGSALEEGIKMSKPKWPPED
EISKPEVPEDVDLDLKKLRRSSSLKERSRPFTVAASFQSTSVKSPKTVSPPIRKGWSMSEQSEESVGGRVAERKQVENAK
ASKKNGNVGKTTWONKESKGETGKRSKEGHSLEMENENLVENGADSDEDDNSFLKQQSPQEPKSLNWSSFVDNTFAEEFT
TONQKSQDVELWEGEVVKELSVEEQIKRNRYYDEDEDEE

Nesvizhskii A |, Aebersold R Mol Cell Proteomics 2005;4:1419-1440.



Protein Families

e Sequence coverage is often poor in large scale studies:
many proteins are identified through very few peptides
only

* In prokaryotes, typically over 90% of the identified
peptides are unique in the whole proteome

* |n particular in eukaryotes the large number of orthologs

leads to significant sequence identity between different
proteins that are not isoforms

* |n eukaryotes, the number of unique identified peptides
can thus easily drop below 50% (Gupta & Pevzner, 2009)



Protein Families

Peptides identified:

1 TIGGGDDSENTFFSETGAGK ) IHFPLATYAPVISAEK 9 VGINYQPPTVVPGGDLAK
2 AVEFVDLEPTVIDEVR 6 AYHEQLSVAEITNACFEPANQMVK 10 AVCMLSNTTATAEAWAR
3 QLFHPEQLITGKEDAANNYAR e YMACCLLYR 11 LDHKFDLMYAK

! NLDIERPTYTNLNR 8 SIQFVDWCPTGFK

Assignment of peptides to proteins:
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Parsimony-Based Inference

* |dea

Find the smallest set of proteins
explaining all observed peptides

* If all peptides mapping to one
protein family can be explained
by a single protein, then it is
quite likely, that only this protein
is present (but this must not
necessarily be the case)

* Basically: applying Occam’s razor
to the dataset — find the simplest
explanation possible (maximum
parsimony)



Parsimony-Based Inference

a peptides b peptides
e Scenarios for different proteins given 1.2 3 4 1 2 3 4
. E A —m == E A —mm mm mm
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* Indistinguishable proteins share
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in other proteins

Nesvizhskii A |, Aebersold R Mol Cell Proteomics 2005;4:1419-1440.



Protein Ambiguity Groups

Example:
A —I— I — S —— -
B — ——— N —

C — 1 — -

* Note that even though the presence of A is sufficient to explain all

observed peptides, this does not automatically imply the absence
of Band C

 The data is explained equally well by the presence of A, the
presence of A+B,A+C,B+C,orA+B+C

* The set of proteins sharing one or multiple peptides is often
referred to as a protein ambiguity group



Parsimony-Based Inference

* Maximum parsimony inference results in a minimal list of proteins

* [t thus removes all distinct and differentiable proteins of a protein
ambiguity group

* |t does not contain any subsumable or subset proteins

* Inthe previous example, A would be sufficient to explain the
observed peptides, B and C would not be reported

' [ .
- —




Reporting of PAGs

L L] — A 1.  Protein A
5 peptides 1, 2
2. Protein B
3 peptides 3, 4*
3. ProteinC
4 peptides 4*, 5
4. Protein E

peptides 6%, 7, 8
Protein F, Protein G
peptides 9%, 10*
. Protein group:
(1) Protein H
peptides 11*, 12*, 13*
(2) Protein |
peptides 11*, 12*
(3) ProteinJ
peptides 11*, 13*

'
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[17]
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Nesvizhskii A |, Aebersold R Mol Cell Proteomics 2005;4:1419-1440.



Inference through Quantification

Quantitative data can be used for inference as well
(similar to transcript data)

This is, however, non-trivial and usually done manually
and on a case-by-case basis

Distinct peptides can be used to quantify their source
proteins

Shared peptides result in an averaging of the quantitative
information

This results in (often underdetermined) systems that can
be used to quantify isoforms

Quantitative information can also be used to prove the
presence of a specific isoform (through deviating ratios
of shared peptides)
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Inference through Quantification
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shared peptide
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1 2 3 4 9
relative peptide abundance ratios
I'1 I’2 I'3 r4 r5
A T _ R,=r
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£ B — | — Ry =1,
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o c=Nh
e — =
v v
N! N!
}/’1 — 4 = RA }"3 — B — Rb’ v
N, Ny significantly different peptide
distinct peptide distinct peptide ratios suggest presence of D
in the sample

1
E(RA+RB) if N,~N,

— R, if N ;N >> NNy

Ry if NN <<Ny,N,

relative peptide ratio depends on absolute
protein abundance



Inference through Quantification

Peptides Proteins
DGGVOACFSR R, = 1.88 = 0.3
H/L ratio 1.88 + 0.3 >
DTKEIYTHFTCATDTK
H/L ratio 1.02 + 0.15
LEDSICNNK >

H/L ratio 1.35 + 0.27

ITHSPLTICFPEYTGANKYDEAASYIQSK no conclusive evidence
H/L ratio 1.1 + 0.29
ITHEDGYSEEECR
H/L ratio 1.06 + 0.14
LWADHGVQACFGR >
H/L ratio 1.09 % 0.2
RLWADHGVQACFGR 1.07 £ 0.2
H/L ratio 1.08 + 0.1
QLFALSCTAEEQGVLPDDLSGVIRR
H/L ratio 1.01 + 0.14

)
I\
I

* Based on six unigue and two shared peptides from a protein ambiguity group
(three G proteins) one cannot decide whether G(i) alpha 1 is actually present in
the sample

* Often the quantification accuracy is not sufficient to provide a conclusive result

Nesvizhskii A |, Aebersold R Mol Cell Proteomics 2005;4:1419-1440.



Significance of Inferred Hits

What is the meaning of a PSM for a protein identification?
* FDRs calculated on the PSM level
* 1% FDR means that one in 100 identifications yields a an incorrect protein
identification

This does not mean that there is also an FDR rate of 1% on the
protein level!

In particular in large-scale studies (tens of thousands of spectra),
protein FDRs are much higher than peptide FDRs

PSMs for a large number of (mostly) identical samples

* Number of correctly identified proteins does not increase significantly with
the number of spectra (it is always the same proteins being identified,
additional (correct) PSMs do not increase the number of proteins)

* Number of false positives increases with the number of PSMs (yields hits to
random proteins, so initially mostly novel false positives!)



One Hit Wonders

* In many cases, proteins are identified through a single
PSM only

* These ‘single hit wonders’ have long been considered
problematic: a single false PSM can lead to a wrongly
identified protein

* In fact, the so-called ‘Paris guidelines’ for data deposition
in proteomics recommend only reporting identifications
for which at least two peptides have been identified

* This also became known as the ‘two peptide rule’

* Obviously, just dropping a large part of PSMs is
inadequate to address this problem

Bradshaw RA, Burlingame AL, Carr S, Aebersold R. Mol Cell Prot 2006, 5:787-8
http://www.mcponline.org/site/misc/ParisReport_Final.xhtml



Recap: Target-decoy databases

Design decoy sequences Separation of target and decoy results
Protein reversal
)
| LK.IHGFEDCAR.Q 70- m Target
QR.ACDEFGHIK.L W Decoy
| QR.IHGFEDCAK.L 8) | Standard search (10,559 MS/MS)
@
Pseudo reversal S
o
)
a
Random
Residue Frequency
A 0.070
C 0.023
D 0.046 SEQUEST rank
E 0.070 70-
F 0.036
60 Precursor-shifted search
® 50
Markov g 4o
Residue Frequency qc,
A 0.047 - 307
C 0.003 Q. 20-
[STEV]+ D 0.043 10-
E 0.087
F 0020 O T2 T3 T4Ts5 T T7 T8 09 "0

SEQUEST rank



Recap: FDR Calculation

* General equation for FDR calculation (see statistics lecture)

FP
FDR = FPYTP

There are two ways how FDRs are calculated based on target-decoy
search results:

o Kall et al. suggest (Kl etal., Proteome Res. 2008, 7, 29- 34)

__ #decoy
FDR = Htarget

d Zha ng et a | . Suggest (Zhang et al., J Proteome Res 2007;6(9):3549-3557)

. 24tdecoy
DR = Htarget+#decoy

* OpenMS::TOPP::FalseDiscoveryRate uses the Kdéll metrics



One Hit Wonders

 Gupta & Pevzner argued in 2009 that the application of the two
peptide rule actually results in increased false discovery rates

 Removing one-hit wonders should improve the FDR of peptide
identifications — this is indeed the case

* For a given number of decoy hits, the number of target peptides
increases compared to keeping all PSMs (‘single peptide rule’)

x 10

55

#Peptides in Target database

single-peptide rule with Inspect score
2L two-peptide rule with Inspect score ||
w single-peptide rule with MS-GF score

— two-peptide rule with MS-GF score

0 200 400 600 800 1000
#Peptides in Decoy database

Gupta & Pevzner, J. Proteome Res. 2009, 8, 4173-4181.



One Hit Wonders

* On the protein level things are different, however

* For the same dataset, the number of identified proteins is higher
using the single peptide rule than using the two peptide rule at the
same FDR!

* More peptide identifications thus do not necessarily imply a higher
protein discovery rate

(b) 2800

2600

2400}

2200F

2000

#Proteins in Target database

18001 two-peptide rule with Inspect score ||
single-peptide rule with Inspect score

— two-peptide rule with MS-GF score

""""""" single-peptide rule with MS-GF score

10 20 30 40 50 60 70 80 90
#Proteins in Decoy database

1600
0

Gupta & Pevzner, J. Proteome Res. 2009, 8, 4173-4181.



Protein FDRs

Peptides Proteins in the database

+ PO

Peptide 2 Y / abundance
S driven
+ |Peptide 3 RSN :
~ ] matching
g + -/k/ Prot B
correct + |Peptides s
(+)  + [Peptide6 semi-random
+ |Peptide 7] matching
Popico s M8 (ength,
omology
+ [Peptide 9]
+ [Peptideto]
error rate 20% = error rate 40%
(PSM level) (protein level)

* Error rates increase when going from peptides to proteins
* Correct peptide IDs tend to group into a small set of correct proteins
* Incorrect IDs are semi-random and scatter over the whole protein database

A. Nesvizhskii, J. Proteomics (2010), 73:2092-2123
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ProteinProphet

* ProteinProphet is an open-source software tool
for protein inference and currently one of the
standard tools in the area

* Key ideas

* Maximum parsimony approaches to compile protein
lists

* Reporting of protein ambiguity groups

* Protein probability estimation: estimate the
probability that a given protein is correctly identified

given all evidence for it

Nesvizhskii, et al., Anal. Chem. (2003), 75, 4646-4658



ProteinProphet - Overview

| * ' ) [ °* |
Protein
level '
' : peptide
N : 3 X : grouping,
enzvmarnc ' ! \ - validation
digestion : J :
P ! o) ]
P v
Y v
i Vi
. ‘ ﬁ i i
Peptide D [:L 0000 0 0
level AAAA A DA
peptide mixture |, 2% peptlde identifications
LOMS/MS SIS database
vearch,
validation
MS/MS spectra
'e‘vel -— -— - -- -— -— -— PT ¥ PV

Nesvizhskii, et al., Anal. Chem. (2003), 75, 4646-4658



PeptideProphet

* Peptide Probability Estimates (PPE)

Computed by PeptideProphet

Converts search engine scores into a probabilities

Similar ideas have been discussed in the context of consensus
identification

PeptideProphet uses expectation maximization to compute a

mixture model of the score distributions of correct and
incorrect PSMs

Given a PSM and a search engine score, we can thus compute a
probability that the PSM is correct

* In contrast to a (raw) score, PPEs are a simple way to
determine the trust in each individual PSM

Nesvizhskii, et al., Anal. Chem. (2002), 74, 5383-5392



Protein Probability Estimates

* Given the PPEs, we can easily compute the probability for each of
the induced protein IDs

* Assuming all peptides are unique, we can compute the probability
P for an protein identification as 1 minus the probability of all
peptide identifications inducing this peptide being wrong

 We could do this on the peptide level quite simply as follows:
P=1-]] (1-p)

/
with probabilities p; for the peptide identification of peptide /
being correct

« However, we also need to consider multiple evidence for different
spectra giving evidence for the same peptide



Protein Probability Estimates

* We thus need to consider probabilities

for each PSM independently

 Each PSM is assigned a PPE by
PeptideProphet

* Probability that a protein is not
present in a sample despite its PSMs
depends on the probabilities p(+/D))
for the peptide ID of peptide i based
on the observed data (spectrum) j
being correct

* We can thus compute P based on PPEs “

of all PSMs:

P=1-T]]](1-p(+D))
I

protein wdentifications

I ;I‘L‘;’J'H'(/‘t'
LBroupring,
validation

)

v

i
mOC

//’// ARD A

pgptldg identifications
database

vearch,

validation

Nesvizhskii, et al., Anal. Chem. (2003), 75, 4646-4658



Protein Probability Estimates

 There are a few problems with this:
* PSMs are not independent

There is a high probability for multiple spectra of the
same peptide to hit the same incorrect ID if the
spectra are of high quality, but do not match the
database (e.g., due to post-translational
modification)

* Ambiguous peptide-protein matches

If a peptide matches multiple proteins, its evidence
cannot simply be shared across these proteins



Protein Probability Estimates

 Asimple way to deal with multiple PSMs is to
* Include each peptide just once

e Consider only the PSM with the best PPE of all PSMs
to the same peptide:

p;= maxjp(+/DIJ)
P would then be computed as follows:

P=1-[[-maxp(+D)) =1~ T](1 - p)

| J

* This procedure yields a more conservative estimate of
protein probabilities



ProteinProphet

Example:

>gi|125910|sp|P02754.3 | LACB_BOVIN
MKCLLLALALTCGAQALIVTQTMKGLDIQKVAGTWYSLAMAASDISLLDAQSAPLRVYVEELKPTPEGDL
EILLOKWENGECAQKKIIAEKTKIPAVFKIDALNENKVLVLDTDYKKYLLFCMENSAEPEQSLACQCLVR
TPEVDDEALEKFDKALKALPMHIRLSFNPTOLEEQCHI

 LSFNPTQLEEQCHI : p = (.43 max = 0.65
LSFNPTQLEEQCHI : p = 0.65 }

 TPEVDDEALEK : p = 0.91

' VYVEELKPTPEGDLEILLOK : p = 0.81

||
P(LACB_BOVIN) =1 - (1-0.81) (1 - 0.91) (1 - 0.65) = 0.99

After: Nesvizhskii, et al., Anal. Chem. (2003), 75, 4646-4658



Sibling Peptides

* Correct assignments tend to cluster to the same proteins
* Incorrect assignments tend to be hits to proteins with no other assigned
peptides

* Asaresult, the computed PPEs, while correct in the context of the whole
dataset, need to be corrected for an accurate estimate in the context of their
source protein

* ProteinProphet introduces the notion of sibling peptides
* Sibling peptides are peptides hitting the same protein

e Rather than counting them, ProteinProphet defines the number of sibling
peptides NSP; for a peptide i as the sum of the PPEs:

NSPi= »  p(+|Dn)
{m|msi}

where the sum runs over all peptides m hitting the same protein as i and PPEs p,
are the maximum values for a given peptide reached in the dataset



Sibling Peptides

Example:

>gi|125910|sp|P02754.3 | LACB_BOVIN
MKCLLLALALTCGAQALIVTQTMKGLDIQKVAGTWYSLAMAASDISLLDAQSAPLRVYVEELKPTPEGDL
EILLOKWENGECAQKKIIAEKTKIPAVFKIDALNENKVLVLDTDYKKYLLFCMENSAEPEQSLACQCLVR

TPEVDDEALEKFDKALKALPMHIRLSFNPTOLEEOCHI

 LSFNPTQLEEQCHI : p = (.43 max = 0.65
LSFNPTQLEEQCHI : p = 0.65 }

 TPEVDDEALEK : p = 0.91

' VYVEELKPTPEGDLEILLOK : p = 0.81 =

\/
NSP(VYV...) = 0.91 + 0.65 = 1.56
NSP(TPE...) = 0.65 + 0.81 = 1.46
NSP(LSF...) = 0.91 + 0.81 = 1.72

After: Nesvizhskii, et al., Anal. Chem. (2003), 75, 4646-4658



Sibling Peptides

* Intuitively, one would trust identifications with a high NSP more
than those with a low NSP (more evidence per protein)

 We can thus refine PPEs in the context of the source protein as
follows:

p(+|D, NSP) = p(+|D)p(NSP|+)

p(+|D)p(NSP|+) + p(—|D)p(NSP|-)

with
 p(NSP[+)and p(NSP/-) being the probabilities of having a
particular NSP value for correct/incorrect assignments

 p(+/D) and p(-/D) are the uncorrected probabilities for the
peptide assignment being correct/incorrect



Sibling Peptides

e Values for p(NSP/+) and p(NSP/-) can be computed for the whole
dataset

e NSP values are binned and counted for correct and incorrect
assignments

1
NSP|+) = = +|D;, NSP;

where N is the total number of peptides assignments and p(+) is
the prior probability of a peptide identification being correct

* p(+) can be computed by summation over all peptide
identifications of the dataset:

p(+) = 1N Z p(+|D;, NSP;)




NSP Distributions

 NSP distributions can be determined using expectation
maximization

* As afirst guess, unadjusted p(+|D) values are used to compute an
estimated NSP value for each assignment

* Applying EM then yields adjusted probabilities, this is repeated
until convergence has been reached

* NSP distributions depend on the dataset and the dataset size

2.5 T
2.0¢

o

_~—1 | NSP distribution for datasets of varying

(;f | Zf"“a size:
5 osf 74:2 | { |+ squares: single run of a low-
& 82 2 ] complexity sample
?3 _10/,/ | |+ circles: four runs of the same sample
g s * triangles: 22 runs
-2.0F

-2.5

NSP bin Nesvizhskii, et al., Anal. Chem. (2003), 75, 4646-4658



Influence of NSP Correction

* NSP correction yields better

1.0

predictions of protein _

probabilities 0.8k
* Figure on the right shows

2 06l
the predicted vs. true 5
B
protein probabilities wit S 0.4l
and without NSP .
without

* Different lines correspond to 02r NSP

different datasets

0. K NS
%.0 0.2 0.4 0.6 0.8 1.0

 Dotted line: perfect
computed probability

prediction

Nesvizhskii, et al., Anal. Chem. (2003), 75, 4646-4658



Protein Ambiguity

* Shared peptides within a PAG cause issues as well

* Their probabilities can be distributed over their potential source
proteins through a weighting scheme based on the protein
probabilities:

n n Pn
Po=1—[](1 = w'p(+D)) W= "
I s=1...Ns

* Weights w/” are again estimated iteratively using an EM-like
algorithm

w,A prot
p, | Peptide 1 > A P,
Wi
. | prot
p, | Peptide 2 B -> B P;

Nesvizhskii, et al., Anal. Chem. (2003), 75, 4646-4658



Protein Ambiguity Group

PROTEIN GROUP 1: “flagellin precursor”
1 FLA4_HALN1 1.00
>FLA4_HALNL (P13077) Flagellin B2 precursor

1.00 1 TNTAGY 1.00 7 1,00 4
1.00 1 STIQWIGPDTATTL 1.00 / 1.00 -
1.00 2 GSATGEEASAQVSNR 1.00 /7 1.00 ks
1.00 2 ANVPESLK 0.92 7 0.%0 4
1.00 1 INIVSAY 0.86 / 0,83 4
7 FLAl_HALN1 0.00
>FLAL_HALN1 (P13074) Flagellin Al precursor
0.00 2 GSATGEEASAQVSNR 1.00 / 1.00 4
0.00 1 STIOWIGPDTATTL 1.00 ¢ 1.00 3
Q.00 2 ANVFESLEK 0.92 / 0.90 i
0.00 1 INIVSAY 0.86 / 0.83 “
3 Q9HQTE 0.00
>Q%HQTE Flagellin A2 precursor
0.00 ¢ GSATGEEASAQVSNR 1.00 /7 1.00 3
0.00 1 INIVSAY 0.83 ¢ 0,83 3
0.00 2 ANVPESLK 0.78 / 0.%0 2
4 Q9HQX4 FLA3 HALN1 0.00
>Q9HQOX4 Flagellin B3 precursor
>»FLA3 HALN1l (F13076¢) Flagellin Bl precursor
¢.00 2 GSATGEEASAQVSNR 1.40 / 1.00 2
0.00 1 INTAGY 1.00 / 1.00 2
0.00 1 INIVSAY 0.83 ¢/ 0,83 2

Nesvizhskii, et al., Anal. Chem. (2003), 75, 4646-4658
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Estimating Protein FDRs

* Peptides FDRs do not correspond to protein FDRs

e Currently, large-scale studies often have dozens
or hundreds of LC-MS runs that are being
accumulated

* Repeated measurements lead to an accumulation
of false positive identifications

* As arule of thumb, protein FDR increases linearly
with the number of repeat measurements

* FDRs can be estimated in the same fashion as
PSM FDRs through a naive target-decoy approach



MAYU

MAYU estimates protein FDRs
for large-scale datasets

The approach is similar to the

PSM FDR determination done
in PeptideProphet, but on the
level of proteins

MAYU fits a hypergeometric
distribution to determine the
expected number of false
positives

\
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Reiter et al., Mol. Cell. Proteomics, 2009, 8, 2405-2417
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Reiter et al., Mol. Cell. Proteomics, 2009, 8, 2405-2417




MAYU vs. ProteinProphet

protein identification FDR

protein identification FDR
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MAYU
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* Interestingly, increasing the PSM FDR does not yield an increased
rate of true protein identification

e Currently popular values of 1-5% PSM FDR seem to be much to
high and yield very large protein FDRs (>10%)

Reiter et al., Mol. Cell. Proteomics, 2009, 8, 2405-2417
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* These figures show the increase of protein FDR with the number of repeat
measurements (right: color = number of runs)

 Ascan be seen from these plots, large-scale studies are particularly prone to FP
accumulation

* Protein FDRs can thus easily reach values of over 50%, i.e. half of reported protein
identifications can be incorrect! Reiter et al., Mol. Cell. Proteomics, 2009, 8, 2405-2417



Benchmarking Inference Engines

 With MAYU it is possible to benchmark different protein inference engines and
PSM selection strategies (e.g., two-peptide vs. single-peptide rule)

database
search

- .l.. - k ]

- —
FDR

>
J FDR

h. E/_

——i
\. J FDR

_ otblss. E/

—
- J FDR

peptide-spectrum protein response
matches identifications curves

Claassen et al., Mol Cell Proteomics (in press)



Benchmarking Inference Engines

* Conclusions
e Keep all high quality hits,
independent of whether they
are single-hit wonders or not

QD

# TP PID
5500 6000 6500 7000 7500 8000 8500
|

e Stringent FDR filtering on the
PSM level is required to get a
good protein FDR

e Optimal strategy might depend
on the dataset and on the
organism (database size!)

- ® optimal
@ w/o uncertain single hits
w/o single hits

& Protein Prophet

I I I I I I
0.00 0.02 0.04 0.06 0.08 0.10

pFDR

Claassen et al., Mol Cell Proteomics (in press)
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