Tim Hempel Noé group FB Mathematik und Informatik

Molecular Dynamics Data Input and Featurization in PyEMMA

PyEMMA winter school 2018

Featurization "picking observables", e.g. backbone torsions

PyEMMA natively supported features:

- coordinates: all, heavy, Ca, selection
- angles:
 - backbone torsions
 - sidechain torsions
 - dihedrals
- distances or contacts between
 - all atom
 - Ca
 - heavy atom
- minimum distances
 - between residues or groups
- custom features

a) "what is the best description of my system?"
b) "what do I want to model?"

"What is the minimum dimensionality that still represents all of the important processes?"

PyEMMA natively supported coordinate transforms:

- TICA (time-lagged independent component analysis)
 - strongly recommended
- PCA (principal component analysis)

"What discretization resolves my processes best?"

PyEMMA natively supported clustering algorithms:

- k-means
- regular space
- uniform time

