
Coarse-graining Markov 
state models with PCCA



Coarse-graining Markov state models

• Coarse-graining Markov state models here means
finding a smaller transition matrix that does a 
similar job as the large original transition matrix.

• We have already seen one way of reducing the 
dimension of a transition matrix. Let’s take this as 
our starting point…



The truncated eigendecomposition

• The eigendecomposition of !(#) reads
!(#) = &' # (

• We have seen that for sufficiently large lag times #, the majority 
of eigenvalues become almost zero.

• We can therefore truncate the matrix '(#).
1 0 0 ⋯ 0 0
0 0.99 0 ⋯ 0 0
0 0 ⋱ ⋱ 0 0
⋮ ⋮ ⋱ ⋱ 0 0
0 0 0 0 0 0
0 0 0 0 0 0

Delete this and call the reduced matrix 0'. We can also ignore the 
corresponding eigenvectors in &, ( and call the reduced matrix 0&, 1(.



The truncated eigendecomposition

• We now have ! " ≈ $%$&("))*.
• And also ! " + ≈ $%$&+("))* since  )*$% = Id.

• So did we find what we wanted?
• $&(") replaces ! for large " ✓
• $&(") is a small matrix ✓
• But $&(") is not a transition matrix. 

e.g. $&/ ≠ /

• Can we correct the last point?



A closer look at the eigenvectors



A closer look at the eigenvectors

=
"## "$# "%# "&#
"## "$$ "%% "&$
"#% "$% "%% "&%
"#& "$& "%% "&&

'( = )( *+(

• The dominant eigenvectors can be linearly 
transformed into a indicator vectors for 
the metastable states.

• These indicators are called memberships.



Coarse-graining with PCCA

• Use eigendecomposition and insert !!"#:
$ = &'( ) *+ = &'! !"#( ) ! !"#*+

• We have $, = &'!$-,!"#*+
• Are we done now?

• $- replaces $ for large ) ✓ Same eigenvalue as $ ✓
• $- is a small matrix ✓
• $-. = . (without proof) ✓
• $- can be interpreted as the transition matrix between the 

metastable states. ✓
• $- is a Koopman matrix. (without proof) ✓
• $- ≱ 0

$-



PCCA in PyEmma

• ! ... metastable memberships
• "! ... metastable distributions
• argmax( χ*( … metastable assignments
• +* = {. ∣ argmax( χ0( = 1} … metastable sets +* *34,…,7
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Appendix: Proof that !"# = #

• Memberships must sum to one %#&×( = #)×(
• The first right eigenvector is constant *+( = #)×(.
• ⇒ %#&×( = *+(
• Use definition of %:  %#&×( = *-#&×(
• Therefore *+( = *-#&×( which is satisfied by 
-#&×( = +(.
• ⇒ !"# = -.(/ 0 -# = -.(/ 0 +( = -.(+( = #



Appendix: Computing A

≈

Cov %, % = ()*)+*(
Overlap matrix of metastable states,
weighted by stationary distribution

+, = diag(()*)2)
Stationary weight of the metastable states
Inserted into the diagonal of a matrix.

tr(+,67()*)+*() → min









• ! ∈ ℝ$×& matrix of dominant eigenvectors
• ' ∈ ℝ$×& matrix of memberships

• ' ≥ 0 non-negativity
• ∑+,-& ' = 1 partition of 1
• ' ≈ !1 spectral clustering


