Coarse-graining Markov state models with PCCA

Coarse-graining Markov state models

- Coarse-graining Markov state models here means finding a smaller transition matrix that does a similar job as the large original transition matrix.
- We have already seen one way of reducing the dimension of a transition matrix. Let's take this as our starting point...

The truncated eigendecomposition

- The eigendecomposition of $\mathbf{P}(\tau)$ reads $\mathbf{P}(\tau) = \mathbf{R} \mathbf{\Lambda}(\tau) \mathbf{L}$
- We have seen that for sufficiently large lag times τ , the majority of eigenvalues become almost zero.
- We can therefore truncate the matrix $\Lambda(\tau)$.

Delete this and call the reduced matrix $\widetilde{\Lambda}$. We can also ignore the corresponding eigenvectors in **R**, **L** and call the reduced matrix $\widetilde{\mathbf{R}}$, $\widetilde{\mathbf{L}}$.

The truncated eigendecomposition

- We now have $\mathbf{P}(\tau) \approx \widetilde{\mathbf{R}}\widetilde{\mathbf{\Lambda}}(\tau)\widetilde{\mathbf{L}}$.
- And also $\mathbf{P}(\tau)^N \approx \widetilde{\mathbf{R}} \widetilde{\mathbf{\Lambda}}^N(\tau) \widetilde{\mathbf{L}}$ since $\widetilde{\mathbf{L}} \widetilde{\mathbf{R}} = \mathrm{Id}$.
- So did we find what we wanted?
 - $\widetilde{\Lambda}(\tau)$ replaces **P** for large $\tau \checkmark$
 - $\widetilde{\mathbf{\Lambda}}(\tau)$ is a small matrix \checkmark
 - But $\widetilde{\Lambda}(\tau)$ is not a transition matrix. e.g. $\widetilde{\Lambda}\mathbf{1} \neq \mathbf{1}$
- Can we correct the last point?

A closer look at the eigenvectors

A closer look at the eigenvectors

- The dominant eigenvectors can be linearly transformed into a indicator vectors for the metastable states.
- These indicators are called memberships.

DI

Coarse-graining with PCCA

- Use eigendecomposition and insert AA^{-1} : $P = \tilde{R}\Lambda(\tau)\tilde{L} = \tilde{R}A A^{-1}\Lambda(\tau)A A^{-1}\tilde{L}$ P_{C}
- We have $\mathbf{P}^N = \widetilde{\mathbf{R}} \mathbf{A} \mathbf{P}_{\mathbf{C}}^N \mathbf{A}^{-1} \widetilde{\mathbf{L}}$
- Are we done now?
 - \mathbf{P}_{C} replaces \mathbf{P} for large τ \checkmark Same eigenvalue as \mathbf{P} \checkmark
 - \mathbf{P}_{C} is a small matrix \checkmark
 - $P_C 1 = 1$ (without proof) \checkmark
 - P_C can be interpreted as the transition matrix between the metastable states. \checkmark
 - P_{C} is a Koopman matrix. (without proof) \checkmark
 - $P_C \ge 0$

PCCA in PyEmma

pcca(*m*)

Runs PCCA++ [1]_ to compute a metastable decomposition of MSM states

After calling this method you can access metastable_memberships(),

metastable_distributions() , metastable_sets() and metastable_assignments() .

Parameters: m (int) – Number of metastable sets

- Returns: pcca_obj An object containing all PCCA quantities. However, you can also ignore this return value and instead retrieve the quantities of your interest with the following MSM functions: metastable_memberships(), metastable_distributions(), metastable_sets() and metastable_assignments().
- χ ... metastable memberships
- $\Pi \chi$... metastable distributions
- $\operatorname{argmax}_{j} \chi_{ij}$... metastable assignments
- $M_i = \{s \mid \operatorname{argmax}_j \chi_{sj} = i\} \dots$ metastable sets $[M_i]_{i=1,\dots,n}$

Further reading

- Susanna Röblitz, Marcus Weber, "Fuzzy spectral clustering by PCCA+: application to Markov state models and data classification", Advances in Data Analysis and Classification, 7, 147 (2013)
- Marcus Weber, Konstantin Fackeldey, "G-PCCA: Spectral Clustering for Non-reversible Markov Chains", Konrad-Zuse-Zentrum für Informationstechnik Berlin, ZIB-Report 15-35 (2015)

Appendix: Proof that $P_C 1 = 1$

- Memberships must sum to one $\chi \mathbf{1}_{n \times 1} = \mathbf{1}_{N \times 1}$
- The first right eigenvector is constant $\mathbf{Re}_1 = \mathbf{1}_{N \times 1}$.
- $\Rightarrow \chi \mathbf{1}_{n \times 1} = \mathbf{R}\mathbf{e}_1$
- Use definition of χ : $\chi \mathbf{1}_{n \times 1} = \mathbf{RA1}_{n \times 1}$
- Therefore $\mathbf{Re}_1 = \mathbf{RA1}_{n \times 1}$ which is satisfied by $\mathbf{A1}_{n \times 1} = \mathbf{e}_1$.
- \Rightarrow **P**_C**1** = **A**⁻¹**A**(τ)**A1** = **A**⁻¹**A**(τ)**e**₁ = **A**⁻¹**e**₁ = **1**

Appendix: Computing A

 $\Pi_{\rm C} = {\rm diag}({\bf A}^{\rm T} {\bf R}^{\rm T} {\bf \pi})$ Stationary weight of the metastable states Inserted into the diagonal of a matrix.

2 3

 $\operatorname{Cov}(\mathbf{\chi}, \mathbf{\chi}) = \mathbf{A}^{\mathrm{T}} \mathbf{R}^{\mathrm{T}} \mathbf{\Pi} \mathbf{R} \mathbf{A}$

Overlap matrix of metastable states,

weighted by stationary distribution

$tr(\Pi_{C}^{-1}A^{T}R^{T}\Pi RA) \rightarrow min$

- $\mathbf{R} \in \mathbb{R}^{N \times n}$ matrix of dominant eigenvectors • $\mathbf{\chi} \in \mathbb{R}^{N \times n}$ matrix of memberships
- $\chi \ge 0$
- $\sum_{i=1}^{n} \mathbf{\chi} = 1$
- $\chi \approx RA$

non-negativity partition of 1 spectral clustering