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, Find properties of a system of interest

using a simple model parametrized from observations”
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Simulation of BPTI




Markov state models

3%

Metastability of states allow us to significantly simplify
the dynamics of our system of interest




Markov state models

Initial state

A Markov state model describes the dynamics of a system as
conditional transition probabilities
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What Is mea—stabi\ity?

rcQ=RN

sets of configurations which are long-lived.
Markov state models assume these states, and exchange between them
IS Important.
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Molecular simulations

e Molecular simulations are realizations of stochastic
process on {2 and are Markovian w.r.t. this space.

p(x,y;t)dy = P[x(t + 7) € y +dy | x(¢) = x]

X,y € 2, T € Ry,

Transition probabilities are well defined

Prinz et al. (2011) JCP 134, 174105



Molecular simulations

e Molecular simulations are realizations of stochastic
process on {2 and are Markovian w.r.t. this space.

p(x,y;t)dy = P[x(t + 7) € y +dy | x(¢) = x]

X,y € 2, T € Ry,
Transition probabilities are well defined

px, A1) = P[x(t + 1) € A[X(?) = X]

=/ dy p(x,y; 7).
yeA

Also applies for regions

Prinz et al. (2011) JCP 134, 174105



Molecular simulations (2)

Ergodicity

No two or more segments of the space ) are dynamically
disconnected from each other.

anagd

For an infinitely long simulation we will have visited every
state x € ) infinitely many times.

Prinz et al. (2011) JCP 134, 174105



Molecular simulations (3)

Reversibility

Simulations fulfill the detailed-balance condition:

ux) p(x,y;7) = u(y) p(y, x; 7)

uw(x) = Z(B)~ ' exp (—BH(x))

At equilibrium the probability of jumping from any x
to any y is the same as jumping from y to x.

Prinz et al. (2011) JCP 134, 174105



An illustration of the
transition density

Min

Single Ensemble Density

Instead of single realizations we now focus on the evolution of an ensemble

Figure courtesy of JH Prinz



Assumptions about the full
dynamics

Markovian

P(wiyr € Alaey,...,x =2) =P(x1, € Al 2 = 1)

Factorization of the dynamics
into conditional probabilities

Chapman-Kolmogorov property

pTl —+ 79 (x, A) — /Qpﬁ (ZE, y)pTQ (ya A) dy

Direct combination of conditional probabilities with different lag-times

Initial state

Final state
o2 | oe%w | 1% | 2% | 1%
@ | 5% | 95% | 0% | 0%
@ | 1% | 0% | 97% | 2%
| 1% | 0% | 2% | 9%




Assumptions about the full
dynamics

Irreducibility

All states of the state space can be reached from any other state in a finite time.
Ensures unique stationary distribution.

Ergodicity

No states are disconnected
No cyclic dynamics.
Ensures time and ensemble average properties are equal.

Reversibility

No net-probability flux at equilibrium. => no energy production/absorption => mass conservation.
Not strictly necessary for Markov models



Ensemble view of dynamics
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A propagator is an operator which transports
probability densities in time

prie(x) = [Prpi] (x) = [ arpr(y, x)pi(v)

Figure courtesy of JH Prinz



Example dynamics
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Propagator depends on lag
time
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Propagator depends on lag
time
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So why is this?



Implied time-scales

Eigenvalues of the propagator
Proi = Xioi
Chapman-Kolmogorov Implies exponential lag-time dependence
Ai(k - 1) = A (7)
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Figure courtesy of JH Prinz



Veta-stapility

* We can approximate the propagator by a finite
number of processes with non-zero Eigenvalues

* |f we have a gap in the Eigenvalue spectrum, we
can choose the lag-time in a manner such that we
fulfill this assumption

* When we do this, processes faster than the lag-
time ‘have decayed’ or ‘are not resolved'.
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Implied timescale ¢,
ti = —T/ log()ti)

Prinz et al. (2011) JCP 134, 174105



Estimation
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Figure courtesy of JH Prinz



Count matrix

ci()l A | B | e | b
A 9963 | 37 0 0
B 22 | 9914 4 0
C 0 2 9919 | 19
D 0 0 119 | 9889

Cij(T) — 5(3772,—7- — i,il?n — ])

Figure courtesy of JH Prinz



Maximum likelihood estimator

We can express the probability of the observed data - discrete trajectory -
given a transition probability matrix of an MSM

L
P(z1,....20 | P) = ]| pory,an

k=1
— pxo,wl et me—l,L
_ Cij
=17

ij

C11

= P11 -

The aim is then to find the P which maximizes this expression -
That Is, the Maximum likelihood estimator.



Analytical solution for Non-
reversible case

e \We enforce the constraint that the transition
orobability matrix is row-stochastic:

Zpij — 1, VZ
J

* One can show the estimator is simply:

_ Gy
Z j Cij

Pij

Prinz et al. (2011) JCP 134, 174105



Reversiple estimator

* Enforces the detailed balance condition.
 No exact analytical solution:
* Fixed-point iteration algorithm available.
e Approximate solutions.

* Implemented in PyYEMMA

Prinz et al. (2011) JCP 134, 174105
Bowman et al. (2009) JCP 131, 124101



Bayesian inference of MSMs

* The less simulation data we have, the more

ambiguous the solution of the likelihood problem
will be.

* Conseqguently, it we limit ourselves to the MLE, we
are ignorant as to how robust our inferred MSM is.

* One way to quantify the uncertainty of MSMs is
through Bayesian inference



Bayesian inference of MSMs

Likelihood from before

P(i,..., x| P) =p(C| P) o< |[ iy
s



Bayesian inference of MSMs

Likelihood from before

P(zi,...,z¢ | P) =p(C| P) x prjj

1,7=1
Introduction of prior information

p(P | C) o p(C'| P)p(P)

The prior can encode useful constraints: row-stochasticity,
reversibility, fixed stationary distribution, sparsity etc



Bayesian inference of MSMs

Inference is done by MCMC sampling
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Noé (2008) JCP 128, 244103
Trendelkamp-Schroer & Noé (2013) JCP 138, 164113



Alternative estimators



Transition(-based)
Reweighting Analysis Method

* Allows taking into account
S|mU|at|On data frOm Mmu |t| ple Number of transitions between configurations in all ensembles
thermOdyﬂamlC ensem bleS . Potential or bias energy of each sample in all ensembles

TRAM

multi-ensemble Markov model (MEMM)

e [That means, we can use
data from enhanced Ensemble 2 e . Ei ) o
sampling simulations
together with unbiased
simulation data to
generate models more
efficiently.

Ensemble 1

Wu et al. PNAS 2016, 113(23), E3221-E3230

e More about this tomorrow.

Implemented in PyEMMA



Augmented Markov models

 Enables integration of
external information into
the estimation of Markov
state models. S et - ooty Svoisninsiniine

Maximum Entropy

Equilibrium distribution 7T | " |Equilibrium distribution 7T
Lagrange multipliers )\ks

Transition matrix pz i True expectation Th k

¢ FX u S e Of ex p e ri m e n ta | max Likelihood 1 “max Likelihood
Con Stral ntS from | Simulation Measurement

Biased ensemble — Full observability True ensemble — Partial observability
Statistical error Statistical error

biOphySical experiments Observed transitions Cij Measured expectation O
such as NMR.

* A notebook tutorial
dIStrIbUted Wlth PyEM MA Olsson et al. PNAS 2017, 114(31), pp. 8265-8270. doi: 10.1073/pnas.1704803114
2.5 and up.
Implemented in PyEMMA



Analysis of our estimate

P;;(1)| A B C D
A (0996300037
B |00022 0997400004
C 0,0002 ( 0,9919 | 0,0079
D 0,0115 | 0,988%
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Time-scales are always under-estimated

Figure courtesy of JH Prinz



Increasing the lag-time

COUNT
MATRIX

C;(100)| A B C D
A | 9333 | 4N 40 0
B 1644 | 8014 | 262 | 80
C 0 40 | 9025 | 939
D 0 0 | 1366 | 8634

o0

19,3917

1211

3719

original
timescales

o0

1761

1610

May improve estimates of predicted time-scales

Figure courtesy of JH Prinz
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Projection/discretization error
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Projection/discretization error
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Figure courtesy of JH Prinz



Known problems

* Observations (projections, discretizations) are in
many cases not Markovian

* However, we are often interested in understanding
the full system not just the observation.

O T W

iInce we often have a lot of freedom to choose the
r'ojections and discretization, It is important to

nose one which is as Markovian as possible.



Validation



Chapman-Kolmogorov test

Compare the evolution of the data with the model

k
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Markov model prediction estimation from data
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General scheme for Markov state model generation

Discretize a suitable projection of your data.
Construct a transition matrix.

Estimate the number of meta-stable states (time-
scale gap)

Pertorm Chapman-Kolmogorov test.



AnalysIs

Useful predictions from a MSM



Common properties

Relaxation time-scales

Dominant processes

Stationary distribution (thermodynamics)
Meta-stable sets (more about this later)
Correlation functions (spectroscopic observables)
Mean first passage times

Path probabilities



Spectroscopic observables
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Noé et al. Dynamical fingerprints for probing individual relaxation processes in biomolecular dynamics with simulations and kinetic
experiments. Proc. Nat. Acad. Sci. USA 108, 48224827 (2011).

Olsson & Noé Mechanistic Models of Chemical Exchange Induced Relaxation in Protein NMR. 139, 200-210 JACS (2017)



summary

-+ Markov state models are derived coarse-grained
models of the full original (Markovian) dynamics .

- MSMs may be parameterized (estimated/learned)
from simulation data to compute properties of
Interest.

- MSMs are particularly useful if the projection/
discretization error can be minimized: then the
predicted quantities match the original.



Questions?

Otherwise it's time for the practical.



