Transition Path Theory

- TPT: method to study the ensemble of reactive trajectories.

- reactive trajectory : came from A and goes next to B
- rate at which they occur
- mechanisms (parallel pathways, traps, sequence of events, ...)
- committor: trajectory start starts in i, goes it next to A or to B? also known as " $P_{\text {fold }}$ " transition states have $P_{\text {fold }}=1 / 2$

The committor

- A drunk man walks one block left with $\mathrm{P}=1 / 2$ and one block right with $P=1 / 2$.
- Probability that the man starting in block i will reach home before the bar?

- $P(N)=0 \quad \mathrm{~N}=$ bar. No chance to reach home if already at bar.
- $P(0)=1 \quad 0=$ home. If at home, 100% chance to reach home.
- $P(i)$ for $\notin\{0, N\}$?

Doyle, Snell, Random Walks and Electric Networks, Carus (1984) Image: Valleriani, Nat. Scientific Reports 5, 17986 (2015).

The committor q_{i}^{+}

$P(0)=1, P(N)=0, P(i)$ for $\notin\{0, N\}$?

Start with general statement from probability theory:
E event, F and G event s . t. only one of G or F will occur

$$
P(E)=P(E \mid F) P(F)+P(E \mid G) P(G)
$$

$E=$ the man reaches home first
$\mathrm{F}=$ the first step is to the right
$\mathrm{G}=$ the first step is to the left
P (home) $=P$ (home | went right) $P($ went right $)+P$ (home | went left) P (went left)
$P($ home from $i)=P($ home from $i+1) P($ went right $)+P($ home from $i-1) P($ went left $)$

$$
q_{i}^{+}=q_{i+1}^{+} p_{i, i+1}+q_{i-1}^{+} p_{i, i-1}
$$

The committor q_{i}^{+}

The same argument that we made for a 1-D random walk can be make for a general kinetic network (MSM).
The equations from the last slides are generalized to:

- $q_{i}^{+}=0$ for $i \in A$
- $q_{i}^{+}=1$ for $i \in B$
- $q_{i}^{+}=\sum_{j \in I} p_{i j} q_{j}^{+}$for $i \notin\{A, B\}$

There exists also a committor q_{i}^{-}that gives the probability of (immediately) coming from a set A without having visited B in between.
For reversible systems

$$
q_{i}^{-}=1-q_{i}^{+}
$$

Reactive probability flux $\mathbf{F}^{A B}$

Reactive flux : average number of reactive trajectories per time unit making a transition from i to j on their way from A to B.
Misnomer, really should be "current", unit = 1/time unit

$$
F_{i j}^{A B}:= \begin{cases}q_{i}^{-} \pi_{i} P_{i j} q_{j}^{+} & \text {if } i \neq j \\ 0 & \text { if } i=j\end{cases}
$$

Properties (essentially the properties of electric current):

- Flux conservation within the intermediate states (Kirchhoff's law)

$$
\sum_{j}\left(F_{i j}^{A B}-F_{j i}^{A B}\right)=0 \text { for all } i \notin\{\mathrm{~A}, \mathrm{~B}\}
$$

- What goes into the network in A comes out at B:

$$
\sum_{i \in A, j \notin A} F_{i j}^{A B}=\sum_{i \notin B, j \in B} F_{i j}^{A B}
$$

Example

transition probabilities:

4

Example

reactive gross flux:

Gross flux vs. Net flux

On their way from A to B, trajectories might take forward and backward steps.
What if we were only interested in the productive flux, that is in steps that take us closer to B ?
Define the net flux :

$$
F_{i j}^{+}=\max \left(F_{i j}^{A B}-F_{j i}^{A B}, 0\right)
$$

for reversible systems one can show that

$$
F_{i j}^{+}=\max \left(\pi_{i} T_{i j}\left(q_{j}^{+}-q_{i}^{+}\right), 0\right)
$$

Example

reactive gross flux:

Example

reactive net flux:

pathway ceconnosition

- A pathway is a sequence of states that starts with a state in A and ends with a state in B

$$
P=\left(i_{1}, i_{2}, \ldots, i_{k}\right) \text { such that } i_{1} \in A, i_{k} \in B
$$

- You can think of a pathway a special network without meshes (loops). There is also a flux matrix \mathbf{F}_{p} for the pathway.
- We aim to decompose the network into a number of pathways.
- The original network should be the "sum" of all the pathways.

$$
\mathbf{F}^{+}=\sum_{k} \mathbf{F}_{\text {path } k}
$$

- The pathway decomposition of the network will use an algorithm that "subtracts" pathways from the original network.

Example

Example

Example

Example

Example

Example

Further reading

- F. Noé, C. Schütte, E. Vanden-Eijnden, L. Reich, T. Weikl: "Constructing the Full Ensemble of Folding Pathways from Short Off-Equilibrium Simulations".
- P. Metzner, C. Schütte, and E. Vanden-Eijnden: "Transition Path Theory for Markov Jump Processes". Mult. Mod. Sim. (2007)
- The capacity (or flux) of pathway is its weakest link

$$
f(P)=\min \left\{f_{i_{l} i_{l+1}} \mid l=1 \ldots k-1\right\}
$$

- Pathway decomposition: chose a pathway P_{1} and remove its capacity from the flux along all edges of P_{1}. Repeat until no flux remains.

outline

- Committor
- Reactive flux
- Gross flux vs. Net flux
- Pathway decomposition
- A word of caution

Gross flux vs. Net flux

On their way from A to B, trajectories might take forward and backward steps.
What if we were only interested in the productive flux, that is in steps that take us closer to B ?
Define the net flux : $f_{i j}^{+}=\max \left(f_{i j}^{A B}-f_{j i}^{A B}, 0\right)$
for the case of detailed balance one can show that

$$
f_{i j}^{+}=\max \left(\pi_{i} T_{i j}\left(q_{j}^{+}-q_{i}^{+}\right), 0\right)
$$

(For the general case, without detailed balance $f_{i j}^{+}$might still contain unproductive cycles/detours.)

Transition Path Theory

Computer tutorial in Markov modeling (PyEMMA)

20.2.2018
Fabian Paul

Coarse-graining of fluxes

Markov model construction is best done with many states.
For better interpretation you may be interested in a coarse-grained version of the state space (e.g. PCCA sets / metastable sets).
Reactive currents are a quantity that can be coarse-grained without systematic error. (In contrast a to coarse-grained transition matrix).

$$
F_{I J}^{A B}=\sum_{i \in I, j \in J} f_{i j}^{A B} \text { where } I \cap(A \cup B)=\emptyset \text { and } J \cap(A \cup B)=\emptyset
$$

The committor

The discrete forward committor q_{i}^{+}is defined as the probability that the process starting in i will reach first B (home) rather than A (bar).

$$
q_{i}^{+}=q_{i+1}^{+} p_{i, i+1}+q_{i-1}^{+} p_{i, i-1}
$$

Same argument works for general MSM and a "home" and "bar" that consists of more than of one MSM state.

- $q_{i}^{+}=0$ for $i \in A$
- $q_{i}^{+}=1$ for $i \in B$
- $q_{i}^{+}=\sum_{j \in I} p_{i j} q_{j}^{+}$for $i \notin\{A, B\}$

For the reverse process

- $q_{i}^{-}=1$ for $i \in A$
- $q_{i}^{-}=0$ for $i \in B$
- $q_{i}^{-}=\sum_{j \in I} \frac{\pi_{j}}{\pi_{i}} p_{j i} q_{j}^{-}$for $i \notin\{A, B\}$

With detailed balance $q_{i}^{-}=1-q_{i}^{+}$

Pathway decomposition

- pathway $P=\left(i_{1}, i_{2}, \ldots, i_{k}\right)$ such that $i_{1} \in A, i_{k} \in B$
- capacity (or flux) of pathway

$$
f(P)=\min \left\{f_{i_{l} i_{l+1}} \mid l=1 \ldots k-1\right\}
$$

- Pathway decomposition: chose a pathway P_{1} and remove its capacity from the flux along all edges of P_{1}. Repeat until no flux remains.
- Decomposition is not unique, depends on the order in which P_{1}, P_{2}, \ldots are picked. Reasonable choice: remove the strongest pathway (the one with largest capacity) first, then remove the strongest pathway of the remaining network.

