
BNT Structure Learning Package :

Documentation and Experiments

Philippe Leray, Olivier Francois

TECHNICAL REPORT

Laboratoire PSI - INSA Rouen- FRE CNRS 2645
BP 08 - Av. de l’Université, 76801 St-Etienne du Rouvray Cedex

{Philippe.Leray, Olivier.Francois}@insa-rouen.fr

June 14, 2006, Version 1.3

Abstract

Bayesian networks are a formalism for probabilistic reasoning that have grown increasingly pop-
ular for tasks such as classification in data-mining. In some situations, the structure of the
Bayesian network can be given by an expert. If not, retrieving it automatically from a database
of cases is a NP-hard problem; notably because of the complexity of the search space. In the last
decade, numerous methods have been introduced to learn the network’s structure automatically, by
simplifying the search space (augmented naive bayes, K2) or by using an heuristic in the search
space (greedy search). Most methods deal with completely observed data, but some can deal with
incomplete data (SEM, MWST-EM).

The Bayes Net Toolbox for Matlab, introduced by [Murphy, 2001a], offers functions for both
using and learning Bayesian Networks. But this toolbox is not ’state of the art’ as regards struc-
tural learning methods. This is why we propose the SLP package.

Keywords

Bayesian Networks, Structure Learning, Classification.

1

1 Introduction

Bayesian networks are probabilistic graphical models introduced by [Kim & Pearl, 1987],
[Lauritzen & Speigelhalter, 1988], [Jensen, 1996], [Jordan, 1998].

Definition 1. B = (G, θ) is a Bayesian network if G = (X,E) is a directed acyclic graph
(dag) where the set of nodes represents a set of random variables X = {X1, · · · ,Xn}, and if
θi = [P(Xi/XPa(Xi))] is the matrix containing the conditional probability of node i given the state
of its parents Pa(Xi).

A Bayesian network B represents a probability distribution over X which admits the following
joint distribution decomposition:

P(X1,X2, · · · ,Xn) =

n
∏

i=1

P(Xi/XPa(Xi)) (1)

This decomposition allows the use of some powerful inference algorithms for which Bayesian
networks became simple modeling and reasoning tools when the situation is uncertain or the
data are incomplete. Then Bayesian networks are also practical for classification problems when
interactions between features can be modelized with conditional probabilities. When the network
structure is not given (by an expert), it is possible to learn it automatically from data. This
learning task is hard, because of the complexity of the search space.

Many softwares deal with Bayesian networks, for instance :

- Hugin [Andersen et al., 1989]

- Netica [Norsys, 2003]

- Bayesia Lab [Munteanu et al., 2001]

- TETRAD [Scheines et al., 1994]

- DEAL [Bøttcher & Dethlefsen, 2003]

- LibB

- the Matlab Bayes Net Toolbox [Murphy, 2001a]

For our experiments, we use Matlab with the Bayes Net Toolbox [Murphy, 2001a] and the Struc-
ture Learning Package we develop and propose over our website [Leray et al., 2003].

This paper is organized as follows. We introduce some general concepts concerning Bayesian
network structures, how to evaluate these structures and some interesting properties of scoring
functions. In section 3, we describe the common methods used in structure learning; from causal-
ity search to heuristic searches in the Bayesian network space. We also discuss the initialization
problems of such methods. In section 4, we compare these methods using two series of tests.
In the first series, we try to retrieve a known structure while the other tests aim at obtaining a
good Bayesian network for classification tasks. We then conclude on the respective advantages
and drawbacks of each method or family of methods before discussing future relevant research.

2

We describe the syntax of a function as follows.

Ver

[out1, out2] = function(in1, in2)

Brief description of the function.

’Ver’, in the top-right corner, specifies the function location : BNT if it

is a native function of the BNT toolbox, or v1.3 if it can be found in the

latest version of the SLP package

The following fields are optionals :

INPUTS :

in1 - description of the input argument in1

in2 - description of the input argument in2

OUTPUTS :

out1 - description of the output argument out1

out2 - description of the output argument out2

e.g., out = function(in), a sample of the calling syntax.

2 Preliminaries

2.1 Exhaustive search and score decomposability

The first (but naive) idea as to finding the best network structure is the exploration and evaluation
of all possible graphs in order to choose the best structure. Robinson [Robinson, 1977] has proven
that r(n), the number of different structures for a Bayesian network with n nodes, is given by
the recursive formula of equation 2.

r(n) =

n
∑

i=1

(−1)i+1

(

n

i

)

2i(n−i)r(n − i) = n2O(n)

(2)

This equation gives r(2) = 3, r(3) = 25, r(5) = 29281, r(10) ≃ 4, 2 × 1018.

BNT

Gs = mk_all_dags(n, order)

generates all DAGs with n nodes according to the optional ordering

Since equation 2 is super exponential, it is impossible to perform an exhaustive search in a
decent time as soon as the node number exceeds 7 or 8. So, structure learning methods often
use search heuristics.

In order to explore the dags space, we use operators like arc-insertion or arc-deletion. In
order to make this search effective, we have to use a local score to limit the computation to the
score variation between two neighboring dags.

Definition 2. A score S is said to be decomposable if it can be written as the sum or the product
of functions that depend only of one vertex and its parents. If n is the numbers of vertices in the

3

graph, a decomposable score S must be the sum of local scores s:

S(B) =

n
∑

i=1

s(Xi, pa(Xi)) or S(B) =

n
∏

i=1

s(Xi, pa(Xi))

2.2 Markov equivalent set and Completed-pdags

Definition 3. Two dags are said to be equivalent (noted ≡) if they imply the same set of
conditional (in)dependencies (i.e. they have the same joint distribution). The Markov equivalent

classes set (named E) is defined as E =A/≡ where we named A the dags’ set.

Definition 4. An arc is said to be reversible if its reversion leads to a graph which is equivalent
to the first one. The space of Completed-PDAGs (cpdags or also named essential graphs) is
defined as the set of Partially Directed Acyclic Graphs (pdags) that have only undirected arcs
and unreversible directed arcs.

For instance, as Bayes’ rule gives
P(A, B, C) = P(A)P(B|A)P(C|B) = P(A|B)P(B)P(C|B) = P(A|B)P(B|C)P(C)

those structures, '&%$!"#A // '&%$!"#B // '&%$!"#C ≡ '&%$!"#A '&%$!"#Boo // '&%$!"#C ≡ '&%$!"#A '&%$!"#Boo '&%$!"#Coo , are equivalent (they all
imply A ⊥ C|B).
Then, they can be schematized by the cpdag '&%$!"#A '&%$!"#B '&%$!"#C without ambiguities.
But they are not equivalent to '&%$!"#A // '&%$!"#B '&%$!"#Coo (where P(A, B, C) = P(A)P(B|A, C)P(C)) for which
the corresponding cpdag is the same graph, which is named a V-structure.

[Verma & Pearl, 1990] have proven that dags are equivalent if, and only if, they have the
same skeleton (i.e. the same edge support) and the same set of V-structures (like '&%$!"#A // '&%$!"#B '&%$!"#Coo).
Furthermore, we make the analogy between the Markov equivalence classes set (E) and the set
of Completed-PDAGs as they share a natural one-to-one relationship.
[Dor & Tarsi, 1992] proposes a method to construct a consistent extension of a dag.

v1.3

dag = pdag_to_dag(pdag)

gives an instantiation of a pdag in the dag space whenever it is possible.

[Chickering, 1996] introduces a method for finding a dag which instantiates a cdpag and also
proposes the method which permits to find the cdpag representing the equivalence classe of a
dag.

v1.3

cpdag = dag_to_cpdag(dag)

gives the complete pdag of a dag (also works with a cell array of cpdags,

returning a cell array of dags).

v1.3

dag = cpdag_to_dag(cpdag)

gives an instantiation of a cpdag in the dag space (also works with a cell

array of cpdags, returning a cell array of dags).

4

2.3 Score equivalence and dimensionality

Definition 5. A score is said to be equivalent if it returns the same value for equivalent dags.

For instance, the bic score is decomposable and equivalent. It is derived from principles
stated in [Schwartz, 1978] and has the following formulation:

BIC(B,D) = log P(D|B, θML) −
1

2
Dim(B) log N (3)

where D is the dataset, θML are the parameter values obtained by likelihood maximisation, and
where the network dimension Dim(B) is defined as follows.

As we need ri−1 parameters to describe the conditional probability distribution P(Xi/Pa(Xi) =
pai) , where ri is the size of Xi and pai a specific value of Xi parents, we need Dim(Xi,B) pa-
rameters to describe P(Xi/Pa(Xi)) with

Dim(Xi,B) = (ri − 1)qi where qi =
∏

Xj∈Pa(Xi)

rj (4)

And the dimension Dim(B) of the Bayesian network is defined by

Dim(B) =

n
∑

i=1

Dim(Xi,B) (5)

v1.3

D = compute_bnet_nparams(bnet)

gives the number of parameters of the Bayesian network bnet

The bic-score is the sum of a likelihood term and a penalty term which penalizes complex
networks. As two equivalent graphs have the same likelihood and the same complexity, the
bic-score is equivalent.

Using scores with these properties, it becomes possible to perform structure learning in

Markov equivalent space (i.e. E =A/≡). This space has good properties: since a algorithm
using a score over the dags space can happen to cycle on equivalent networks, the same method

5

with the same score on the E space will progress (in practice, such a method will manipulate
cpdags).

v1.3

score = score_dags(Data, ns, G)

compute the score (’Bayesian’ by default or ’BIC’ score) of a dag G

This function exists in BNT, but the new version available in the Structure

Package uses a cache to avoid recomputing all the local score in the

score_family sub-function when we compute a new global score.

INPUTS :

Data{i,m} - value of node i in case m (can be a cell array).

ns(i) - size of node i.

dags{g} - g’th dag

The following optional arguments can be specified in the form of

(’name’,value) pairs : [default value in brackets]

scoring_fn - ’Bayesian’ or ’bic’ [’Bayesian’] currently,

only networks with all tabular nodes support Bayesian scoring.

type - type{i} is the type of CPD to use for node i, where the type is a

string of the form ’tabular’, ’noisy_or’, ’gaussian’, etc.

[all cells contain ’tabular’]

params - params{i} contains optional arguments passed to the CPD

constructor for node i, or [] if none.

[all cells contain {’prior’, 1}, meaning use uniform Dirichlet priors]

discrete - the list of discrete nodes [1:N]

clamped - clamped(i,m) = 1 if node i is clamped in case m

[zeros(N, ncases)]

cache - data structure used to memorize local score computations

(cf. SCORE_INIT_CACHE function) [[]]

OUTPUT :

score(g) is the score of the i’th dag

e.g., score = score_dags(Data, ns, mk_all_dags(n), ’scoring_fn’, ’bic’,

’params’, [],’cache’,cache);

In particular, cpdags can be evaluated by

v1.3

score = score_dags(Data, ns, cpdag_to_dag(CPDAGs), ’scoring_fn’, ’bic’)

6

As the global score of a dag is the product (or the summation is our case as we take the
logarithm) of local scores, caching previously computed local scores can prove to be judicious.
We can do so by using a cache matrix.

v1.3

cache = score_init_cache(N,S);

INPUTS:

N - the number of nodes

S - the lentgh of the cache

OUTPUT:

cache - entries are the parent set, the son node, the score of the

familly, and the scoring method

2.4 discretization

Most structure learning implementations work solely with tabular nodes. Therefore, the SLP
package comprises a discretizing function. This function, proposed in [O.Colot & El Matouat, 1994],
returns an optimal discretization.

v1.3

[n,edges,nbedges,xechan] = hist_ic(ContData,crit)

Optimal Histogram based on IC information criterion bins the elements of

ContData into an optimal number of bins according to a cost function based

on Akaike’s Criterion.

INPUTS:

ContData(m,i) - case m for the node i

crit - different penalty terms (1,2,3) for AIC criterion or can ask the

function to return the initial histogram (4) [3]

OUTPUTS:

n - cell array containing the distribution of each column of X

edges - cell array containing the bin edges of each column of X

nbedges - vector containing the number of bin edges for each column of X

xechan - discretized version of ContData

7

When the bin edges are given, then the discretization can be performed directly.

v1.3

[n,xechan] = histc_ic(ContData,edges)

Counts the number of values in ContData that fall between the elements in the

edges vector

INPUTS:

ContData(m,i) - case m for the node i

edges - cell array containing the bin edges of each column of X

OUTPUT:

n - cell array containing these counts

xechan - discretized version of ContData

3 Algorithms and implementation

The algorithms we use in the following experiments are: PC (causality search), MWST (max-
imum weight spanning tree), K2 (with two random initializations), K2+T (K2 with MWST
initialization), K2-T (K2 with MWST inverse initialization), GS (starting from an empty struc-
ture), GS+T (GS starting from a MWST-initialized structure), GES (greedy search in the space
of equivalent classes) and SEM (greedy search dealing with missing values, starting from an
empty structure). We also use NB (Naive Bayes) and TANB (Tree Augmented Naive Bayes) for
classification tasks.

In the following, the term n represents the number of nodes of the expected Bayesian network
and the number of attributes in the dataset Data. Then the size of the dataset is [n,m] where
m is the number of cases.

3.1 Dealing with complete data

3.1.1 A causality search algorithm

A statistical test can be used to evaluate the conditional dependencies between variables and
then use the results to build the network structure.

The PC algorithm has been introduced by [Spirtes et al., 2000] ([Pearl & Verma, 1991] also
proposed a similar algorithm (IC) at the same time).
These functions already exist in BNT [Murphy, 2001a]. They need an external function to
compute conditional independence tests.

8

We propose to use cond_indep_chisquare.

v1.3

[CI Chi2] = cond_indep_chisquare(X, Y, S, Data, test, alpha, ns)

This boolean function perfoms either a Pearson’s Chi2 Test or a G2 Likelyhood

Ration test

INPUTS :

Data - data matrix, n cols * m rows

X - index of variable X in Data matrix

Y - index of variable Y in Data matrix

S - indexes of variables in set S

alpha - significance level [0.01]

test - ’pearson’ for Pearson’s chi2 test, ’LRT’ for G2 test [’LRT’]

ns - node size [max(Data’)]

OUTPUTS :

CI - test result (1=conditional independency, 0=no)

Chi2 - chi2 value (-1 if not enough data to perform the test –> CI=0)

Remark that this algorithm does not give a dag but a completed pdag which only contains
unreversible arcs.

BNT

PDAG = learn_struct_pdag_pc(’cond_indep’, n, n-2, Data);

INPUTS:

cond_indep - boolean function that perfoms statistical tests and that can

be called as follows : feval(cond_indep_chisquare, x, y, S, ...)

n - number of node

k - upper bound on the fan-in

Data{i,m} - value of node i in case m (can be a cell array).

OUTPUT :

PDAG is an adjacency matrix, in which

PDAG(i,j) = -1 if there is an i->j edge

PDAG(i,j) = P(j,i) = 1 if there is an undirected edge i <-> j

Then to have a DAG, the following operation is needed :

DAG = cpdag_to_dag(PDAG);

The IC* algorithm learns a latent structure associated with a set of observed variables. The
latent structure revealed is the projection in which every latent variable is:

1) a root node

2) linked to exactly two observed variables.

9

Latent variables in the projection are represented using a bidirectional graph, and thus remain
implicit.

BNT

PDAG = learn_struct_pdag_ic_star(’cond_indep_chisquare’, n, n-2, Data);

INPUTS:

cond_indep - boolean function that perfoms statistical tests and that can

be called as follows : feval(cond_indep_chisquare, x, y, S, ...)

n - number of node

k - upper bound on the fan-in

Data{i,m} - value of node i in case m (can be a cell array).

OUTPUTS :

PDAG is an adjacency matrix, in which

PDAG(i,j) = -1 if there is either a latent variable L such that

i <-L-> j OR there is a directed edge from i->j.

PDAG(i,j) = -2 if there is a marked directed i-*>j edge.

PDAG(i,j) = PDAG(j,i) = 1 if there is and undirected edge i–j

PDAG(i,j) = PDAG(j,i) = 2 if there is a latent variable L such that

i<-L->j.

A recent improvement of PC named BN-PC-B has been introduced by [Cheng et al., 2002].

v1.3

DAG = learn_struct_bnpc(Data);

The following arguments (in this order) are optionnal:

ns - a vector containing the nodes sizes [max(Data’)]

epsilon - value uses for the probabilistic tests [0.05]

mwst - 1 to use learn_struct_mwst instead of Phase_1 [0]

star - 1 to use try_to_separate_B_star instead of try_to_separate_B, more

accurate but more complexe [0]

3.1.2 Maximum weight spanning tree

[Chow & Liu, 1968] have proposed a method derived from the maximum weight spanning tree
algorithm (MWST). This method associates a weigth to each edge. This weight can be either the
mutual information between the two variables [Chow & Liu, 1968] or the score variation when
one node becomes a parent of the other [Heckerman et al., 1994]. When the weight matrix is

10

created, a usual MWST algorithm (Kruskal or Prim’s ones) gives an undirected tree that can be
oriented given a chosen root.

v1.3

T = learn_struct_mwst(Data, discrete, ns, node_type, score, root);

INPUTS:

Data(i,m) is the node i in the case m,

discrete - 1 if discret-node 0 if not

ns - arity of nodes (1 if gaussian node)

node_type - tabular or gaussian

score - BIC or mutual_info (only tabular nodes)

root - root-node of the result tree T

OUTPUT:

T - a sparse matrix that represents the result tree

3.1.3 Naive bayes structure and augmented naive bayes

The naive bayes classifier is a well-known classifier related to Bayesian networks. Its structure
contains only edges from the class node C to the other observations in order to simplify the joint
distribution as P(C,X1, ...,Xn) = P(C)P(X1|C)...P(Xn|C)

v1.3

DAG = mk_naive_struct(n,C)

where n is the number of nodes and C the class node

The naive bayes structure supposes that observations are independent given the class, but
this hypothesis can be overridden using an augmented naive bayes classifier [Keogh & Pazzani, 1999,
Friedman et al., 1997a]. Precisely, we use a tree-augmented structure, where the best tree relying
all the observations is obtained by the MWST algorithm [Geiger, 1992].

v1.3

DAG = learn_struct_tan(Data, C, root, ns, scoring_fn);

INPUTS :

Data - data(i,m) is the mst observation of node i

C - number of the class node

root - root of the tree built on the observation node (root6=C)

ns - vector containing the size of nodes, 1 if gaussian node

scoring_fn - (optional) ’bic’ (default value) or ’mutual_info’

OUTPUT:

DAG - TAN structure

3.1.4 K2 algorithm

The main idea of the K2 algorithm is to maximize the structure probability given the data. To
compute this probability, we can use the fact that:

11

P(G1/D)

P(G2/D)
=

P(G1,D)
P (D)

P(G2,D)
P (D)

=
P(G1,D)

P(G2,D)

and the following result given by [Cooper & Herskovits, 1992] :

Theorem 1 let D the dataset, N the number of examples, and G the network structure on X. If
paij is the jth instantiation of Pa(Xi), Nijk the number of data where Xi has the value xik and
Pa(Xi) is instantiated in paij and Nij =

∑ri

k=1 Nijk then

P(G,D) = P(G)P(D|G) with P(D|G) =
n

∏

i=1

qi
∏

j=1

(ri − 1)!

(Nij + ri − 1)!

ri
∏

k=1

Nijk! (6)

where P(G) is the prior probability of the structure G.

Equation 6 can be interpreted as a quality mesure of the network given the data and is
named the Bayesian mesure.

Given an uniform prior on structures, the quality of a node X and its parent set can be
evaluated by the local score described in equation 7.

s(Xi, Pa(Xi)) =

qi
∏

j=1

(ri − 1)!

(Nij + ri − 1)!

ri
∏

k=1

Nijk! (7)

We can reduce the size of the search space using a topological order over the nodes [Cooper & Herskovits, 1992].
According to this order, a node can only be the parent of lower-ordered nodes. The search space
thus becomes the subspace of all the dags admitting this very topological order.

The K2 algorithm tests parent insertion according to a specific order. The first node can’t
have any parent while, as for other nodes, we choose the parents sets (among admitable ones)
that leads to the best score upgrade.

[Heckerman et al., 1994] has proven that the Bayesian mesure is not equivalent and has
proposed the BDe score (Bayesian mesure with a specific prior on parameters) to make it so.

12

It is also possible to use the BIC score or the MDL score [Bouckaert, 1993] in the K2
algorithm which are both score equivalent.

BNT

DAG = learn_struct_k2(Data, ns, order);

INPUTS:

Data - Data(i,m) = value of node i in case m (can be a cell array)

ns - ns(i) is the size of node i

order - order(i) is the i’th node in the topological ordering

The following optional arguments can be specified in the form of

(’name’,value) pairs : [default value in brackets]

max_fan_in - this the largest number of parents we allow per node [N]

scoring_fn - ’Bayesian’ or ’bic’, currently, only networks with all

tabular nodes support Bayesian scoring [’Bayesian’]

type - type{i} is the type of CPD to use for node i, where the type is a

string of the form ’tabular’, ’noisy_or’, ’gaussian’, etc.

[all cells contain ’tabular’]

params - params{i} contains optional arguments passed to the CPD

constructor for node i, or [] if none.

[all cells contain ’prior’, 1, meaning use uniform Dirichlet priors]

discrete - the list of discrete nodes [1:N]

clamped - clamped(i,m) = 1 if node i is clamped in case m

[zeros(N, ncases)]

verbose - ’yes’ means display output while running [’no’]

OUTPUT:

DAG - The learned DAG which respect with the enumeration order

e.g., dag = learn_struct_K2(data,ns,order,’scoring_fn’,’bic’,’params’,[])

3.1.5 Markov Chain Monte Carlo

We can use a Markov Chain Monte Carlo (MCMC) algorithm called Metropolis-Hastings (MH)
to search the space of all DAGs [Murphy, 2001b]. The basic idea is to use the MH algorithm
to draw samples from P(D|G) (cf equ. 6) after a burn-in time. Then a new graph G′ is kept

13

if a uniform variable take a value greater than the bayes factor
P(D|G′)
P(D|G)

(or a ponderated bayes

factor). Remark that this method is not deterministic.

BNT

[sampled_graphs, accept_ratio, num_edges] = learn_struct_mcmc(Data, ns);

Monte Carlo Markov Chain search over DAGs assuming fully observed data

(modified by Sonia Leach)

INPUTS:

Data - Data(i,m) = value of node i in case m (can be a cell array)

ns - ns(i) is the size of node i

The following optional arguments can be specified in the form of

(’name’,value) pairs : [default value in brackets]

scoring_fn - ’Bayesian’ or ’bic’, currently, only networks with all

tabular nodes support Bayesian scoring [’Bayesian’]

type - type{i} is the type of CPD to use for node i, where the type is a

string of the form ’tabular’, ’noisy_or’, ’gaussian’, etc.

[all cells contain ’tabular’]

params - params{i} contains optional arguments passed to the CPD

constructor for node i, or [] if none.

[all cells contain ’prior’, 1, meaning use uniform Dirichlet priors]

discrete - the list of discrete nodes [1:N]

clamped - clamped(i,m) = 1 if node i is clamped in case m

[zeros(N, ncases)]

nsamples - number of samples to draw from the chain after burn-in 100*N]

burnin - number of steps to take before drawing samples [5*N]

init_dag - starting point for the search [zeros(N,N)]

OUTPUT:

sampled_graphsm = the m’th sampled graph

accept_ratio(t) = acceptance ratio at iteration t

num_edges(t) = number of edges in model at iteration t

e.g., samples = learn_struct_mcmc(data, ns, ’nsamples’, 1000);

3.1.6 Greedy search

The greedy search is a well-known optimisation heuristic. It takes an initial graph, defines
a neighborhood, computes a score for every graph in this neighborhood, and chooses the one
which maximises the score for the next iteration.

With Bayesian networks, we can define the neighborhood as the set of graphs that differ
only by one insertion, reversion or deletion of an arc from our current graph.

14

As this method is complex in computing time, it is recommended to use a cache.

v1.3

DAG = learn_struct_gs2(Data, ns, seeddag, ’cache’, cache);

This is an improvement of learn_struct_gs which was written by Gang Li.

As this algorithm computes the score for every graphs in the neighborhood

(created with mk_nbrs_of_dag_topo developped by Wei Hu instead of

mk_nbrs_of_dag), we have to use a decomposable score to make this computation

efficient and then recover some local scores in cache.

INPUT:

Data - training data, data(i,m) is the m obsevation of node i

ns - the size array of different nodes

seeddag - initial DAG of the search, optional

cache - data structure used to memorize local score computations

OUTPUT:

DAG - the final structure matrix

3.1.7 Greedy search in the Markov equivalent space

Recent works have shown the interest of searching in the Markov equivalent space (see defi-
nition 3). [Munteanu & Bendou, 2002] have proved that a greedy search in this space (with
an equivalent score) is more likely to converge than in the DAGs space. These concepts have
been implemented by [Chickering, 2002a, Castelo & Kocka, 2002, Auvray & Wehenkel, 2002] in
new structure learning methods. [Chickering, 2002b] has proposed the Greedy Equivalent Search
(GES) which used cpdags to represent Markov equivalent classes. This method works in two
steps. First, it starts with an empty graph and adds arcs until the score cannot be improved,
and then it tries to suppress some irrelevant arcs.

v1.3

DAG = learn_struct_ges(Data, ns,’scoring_fn’,’bic’,’cache’,cache);

Like most of others methods, this function can simply be calling as

learn_struct_ges(Data, ns) but this calling does not take advantages of the

caching implementation.

INPUTS:

Data - training data, data(i,m) is the m obsevation of node i

ns - the size vector of different nodes

The following optional arguments can be specified in the form of

(’name’,value) pairs : [default value in brackets]

cache - data structure used to memorize local scores [[]]

scoring_fn - ’Bayesian’ or ’bic’ [’Bayesian’]

verbose - to display learning information [’no’]

OUTPUT:

DAG - the final structure matrix

15

3.1.8 Initialization problems

Most of the previous methods have some initialization problems. For instance, the run of the K2
algorithm depends on the given enumeration order. As [Heckerman et al., 1994] propose, we can
use the oriented tree obtained with the MWST algorithm to generate this order. We just have
to initialize the MWST algorithm with a root node, which can either be the class node (as in
in our tests) or randomly chosen. Then we can use the topological order of the tree in order to
initializ K2. Let us name "K2+T", the algorithm using this order with the class node as root.

v1.3

dag = learn_struct_mwst(Data, ones(n,1), ns, node_type, ’mutual_info’, class);

order = topological_sort(full(dag));

dag = learn_struct_K2(Data, ns, order);

With this order, where the class node is the root node of the tree, the class node can be
interpreted as a cause instead of a consequence. That’s why we also propose to use the reverse
order. We name this method "K2-T".

v1.3

dag = learn_struct_mwst(Data, ones(n,1), ns, node_type, ’mutual_info’, class);

order = topological_sort(full(dag)); order = order(n:-1:1)

dag = learn_struct_K2(Data, ns, order);

Greedy search can also be initialized with a specific dag. If this dag is not given by an
expert, we also propose to use the tree given by the MSWT algorithm to initialize the greedy
search instead of an empty network and name this algorithm "GS+T".

v1.3

seeddag = full(learn_struct_mwst(Data, ones(n,1), ns, node_type));

cache = score_init_cache(n,cache_size);

dag = learn_struct_gs2(Data, ns, seeddag, ’cache’, cache);

3.2 Dealing with incomplete data

3.2.1 Structural-EM algorithm

Friedman [Friedman, 1998] first introduced this method for structure learning with incomplete
data. This method is based on the Expectation-Maximisation principle [Dempster et al., 1977]
and deals with incomplete data without adding a new modality to each node which is not fully
observed.

This is an iterative method, which convergence has been proven by [Friedman, 1998]. It
starts from an initial structure and estimates the probability distribution of variables which data

16

are missing with the EM algorithm. Then it computes the expectation of the score for each
graph of the neighborhood and chooses the one which maximises the score.

BNT

bnet = learn_struct_EM(bnet, Data, max_loop);

INPUTS:

bnet - this function manipulates the baysesian network bnet instead of

only a DAG as it learns the parameters in each iteration

Data - training data, data(i,m) is the m obsevation of node i

max_loop - as this method has a big complexity, the maximum loop number

must be specify

OUTPUT:

DAG - the final structure matrix

3.2.2 MWST-EM algorithm

under construction ...

4 Experimentation

4.1 Retrieving a known structure

4.1.1 Test networks and evaluation techniques

We used two well-known network structures. The first, asia, was introduced by Lauritzen and
Spiegelhalter [Lauritzen & Speigelhalter, 1988] (cf figure 1.a). All its nodes are binary nodes.
We can notice that concerning the edge between A et T , the a priori probability of A is small,
and the influence of A on T is weak. The second network we use is insurance with 27 nodes
(cf figure 1.b) and is available in [Friedman et al., 1997b].

Data generation has been performed for different sample sizes in order to test the influence
of this size over the results of the various structure learning methods. To generate a sample, we
draw the parent node values randomly and choose the son node values according to the Bayesian
network parameters. These datasets are also randomly cleared of 20% of their values to test the
SEM algorithm. Remark that this algorithm is equivalent to the greedy search when the dataset
is complete.

In order to compare the results obtained by the different algorithms we tested, we use an
’editing measure’ defined by the length of the minimal sequence of operators needed to transform
the original graph into the resulting one (operators are edge-insertion, edge-deletion and edge-
reversal, note that the edge-reversal is considered as a independent operator and not as the
deletion and insertion of the opposite edge).

The BIC score of networks is also precised in a comparative way (computed from additional
datasets of 30000 cases for asia and 20000 cases for insurance).

4.1.2 Results and interpretations

Dataset length influence
Figure 2 shows us that MWST algorithm appears to be quite insensitive to the length of the

17

A
��

S
����
�

��
99

9

T
��

::
: L

����
�

B

����
��

��
��

E
����
�

��
::

:

X D

SocioEcon

GoodStudent RiskAversion

VehicleYear MakeModel

AntiTheft HomeBase

OtherCar

Age

DrivingSkill

SeniorTrain

MedCost

DrivQuality DrivHistRuggedAuto AntilockCarValue Airbag

Accident

ThisCarDam OtherCarCost ILiCost

ThisCarCost

Cushioning

Mileage

PropCost

Theft

(a) (b)

Figure 1: Original networks : (a) asia and (b) insurance

dataset. It always gives a graph close to the original one, although the search space is the tree
space which is poorer than the dags-space .

The PC also gives good results with a small number of wrong edges.
The K2 method is very fast and is frequently used in the literature but presents the drawback

of being very sensitive to its initial enumeration order. Figure 2 shows the results of K2 on asia
data with 2 different orders ("elbxasdt" and "taldsxeb"). We can notice that the results are
constant for a given initialization order, but two different initialization orders will lead to very
different solutions. This phenomenon can also be observed in figure 3 with the insurance data
sets.

The results given by the BNPC algorithm are good in arc retrieval but do not have great
scores.1

The MCMC based method permit to obtain good results whatever the dataset length. In all
runs, this method has given similar results from a scoring point of view but there was significant
differences among the editing distances.

The GS algorithm is robust to dataset length variation, especially when this algorithm is
initialized with mwst tree.

1As this method performs statistical tests it can retrieve dependencies that cannot be modelized by a dag then
the last step which consists or orienting edges cannot be performed systematically (maybe this problem is due to
our actual implementation).

18

Asia 250 500 1000 2000 5000 10000 15000

mwst

A S

T L B

O

X D

A S

T L B

O

X D

A S

T L B

O

X D

A S

T L B

O

X D

A S

T L B

O

X D

A S

T L B

O

X D

A S

T L B

O

X D

9;-68837 10;-69235 8;-68772 6;-68704 7;-68704 3;-68694 3; -68694

pc

A S

T L B

O

X D

A S

T L B

O

X D

A S

T L B

O

X D

A S

T L B

O

X D

A S

T L B

O

X D

A S

T L B

O

X D

A S

T L B

O

X D

8;-55765 7;-66374 6;-61536 7;-56386 6;-63967 5;-63959 6;-70154

bnpc

A S

T L B

O

X D

A S

T L B

O

X D

A S

T L B

O

X D

A S

T L B

O

X D

A S

T L B

O

X D

A S

T L B

O

X D

A S

T L B

O

X D

5;-72798 5;-68492 5;-72516 4;-67961 4;-67964 5;-68023 5;-68023

k2

A S

T L B

O

X D

A S

T L B

O

X D

A S

T L B

O

X D

A S

T L B

O

X D

A S

T L B

O

X D

A S

T L B

O

X D

A S

T L B

O

X D

8;-68141 7;-67150 6;-67152 6;-67147 6;-67106 6;-67106 6;-67106

k2(2)

A S

T L B

O

X D

A S

T L B

O

X D

A S

T L B

O

X D

A S

T L B

O

X D

A S

T L B

O

X D

A S

T L B

O

X D

A S

T L B

O

X D

11;-68643 11;-68089 11;-67221 10-67216; 9;-67129 9;-67129 9;-67129

k2+t

A S

T L B

O

X D

A S

T L B

O

X D

A S

T L B

O

X D

A S

T L B

O

X D

A S

T L B

O

X D

A S

T L B

O

X D

A S

T L B

O

X D

10;-68100 8;-68418 9;-67185 8;-67317 8;-67236 10;-67132 10;-67132

k2-t

A S

T L B

O

X D

A S

T L B

O

X D

A S

T L B

O

X D

A S

T L B

O

X D

A S

T L B

O

X D

A S

T L B

O

X D

A S

T L B

O

X D

7;-68097 6;-67099 6;-67112 7;-67105 6;-67091 5;-67091 5;-67091

mcmc

A S

T L B

O

X D

A S

T L B

O

X D

A S

T L B

O

X D

A S

T L B

O

X D

A S

T L B

O

X D

A S

T L B

O

X D

A S

T L B

O

X D

12;-67338 11;-68428 9;-67103 7;-67115 11;-67132 11;-67107 11;-67112

gs

A S

T L B

O

X D

A S

T L B

O

X D

A S

T L B

O

X D

A S

T L B

O

X D

A S

T L B

O

X D

A S

T L B

O

X D

A S

T L B

O

X D

4;-67961 9;-68081 2;-67093 5;-67096 7;-67128 9;-67132 8;-67104

gs+t

A S

T L B

O

X D

A S

T L B

O

X D

A S

T L B

O

X D

A S

T L B

O

X D

A S

T L B

O

X D

A S

T L B

O

X D

A S

T L B

O

X D

9;-68096 6;-68415 2;-67093 7;-67262 2;-67093 2;-67093 1;-67086

ges

A S

T L B

O

X D

A S

T L B

O

X D

A S

T L B

O

X D

A S

T L B

O

X D

A S

T L B

O

X D

A S

T L B

O

X D

A S

T L B

O

X D

4;-68093 6;-68415 5;-67117 2;-67094 0;-67086 0;-67086 0;-67086

sem

A S

T L B

O

X D

A S

T L B

O

X D

A S

T L B

O

X D

A S

T L B

O

X D

A S

T L B

O

X D

A S

T L B

O

X D

A S

T L B

O

X D

10;-83615 9;-81837 2;-67093 8;-67384 4;-67381 5;-67108 4;-67381

Figure 2: Editing measures, networks and BIC scores obtained with different methods (in row)
for several dataset lengths (in column).

19

Insurance 250 500 1000 2000 5000 10000 15000
mwst 37;-3373 34;-3369 36;-3371 35;-3369 34;-3369 34;-3369 34;-3369
k2 56,-3258 62;-3143 60;-3079 64;-3095 78;-3092 82;-3080 85;-3085
k2(2) 26;-3113 22;-2887 20;-2841 21;-2873 21;-2916 18;-2904 22;-2910
k2+t 42;-3207 40;-3009 42;-3089 44;-2980 47;-2987 51;-2986 54;-2996
k2-t 55;-3298 57;-3075 57;-3066 65;-3007 70;-2975 72;-2968 73;-2967
mcmc∗ 50;-3188 44;-2967 46;-2929 40;-2882 50;-2905 51;-2898 54;2892
gs 37;-3228 39;-3108 30;-2944 33;-2888 29;-2859 25;-2837 28;-2825
gs+t 43;-3255 35;-3074 28;-2960 26;-2906 33;-2878 19;-2828 21;-2820
ges 43;-2910 41;-2891 39;-2955 41;-2898 38;-2761 38;-2761 38;-2752
sem 50;-4431 57;-4262 61;-4396 61;-4092 69;-4173 63;-4105 63;-3978

Figure 3: Editing measures and BIC scores, divided by 100 and rounded, obtained with differ-
ent methods (in row) for several dataset lengths (in column) (∗ As the method MCMC is not
deterministic, the results are meaned over five runs).

The GES method has given good results whatever the dataset length. Given an significant
amount of data, the networks issued from this method return better scores than those found
by a classical greedy search. But for the more complex insurance network, the results are
significantly better as for the scoring function than those obtained with a greedy search in the
dags space but are worse in terms of editing distances.

Whatever the dataset length, SEM method always gives identical results on asia data and
very similar results on insurance data. Notice that this method obtains bad editing measures
because it retrieves a bad oriented asia structure. Automatically distinguishing if a bad ori-
entation is a real mistake (by breaking a V-structure for instance) or not is difficult. We are
currently working on an editing distance that takes into account this problem by working into
Markov equivalent classes.

Weak dependance recovering
Most of the tested methods have not recovered the A–T edge of the asia structure. Only the
simple method MWST, PC and K2 initialised with MWST structure retrieve this edge when the
dataset is big enough. This can be explained for all the scoring methods: this edge-insertion does
not lead to a score increase because the likelihood increase is counterbalanced by the penalty
term increase.

4.2 Learning Efficient Bayesian Network for Classification

4.2.1 Datasets and evaluation criterion

asia

We reuse the dataset previously generated with 2000 instances for the learning phase and the
one with 1000 instances for testing.
heart

This dataset, available from Statlog project [Sutherland & Henery, 1992, Michie et al., 1994], is a
medical diagnosis dataset with 14 attributes (continuous attributes have been discretized). This
dataset is made of 270 cases which we split into two sets of respectively 189 cases as learning
data and 81 cases as test data.
australian

20

This dataset, which is available on [Michie et al., 1994], consists in a credit offer evaluation
granted to an Australian customer evaluate considering 14 attributes. It contains 690 cases
which have been separated into 500 instances for learning and 190 for testing.
letter

This dataset from [Michie et al., 1994] is the only one we tested which doesn’t consist in a binary
classificiation: the arity of the class variable being of 26. It has been created from handwritten
letter recognition and contains 16 attributes like position or height of a letter but also means or
variances of the pixels over the x and the y axis. It contains 15000 samples for learning and 5000
samples for testing.
thyroid

This dataset, available at [Blake & Merz, 1998], is a medical diagnosis dataset. We use 22 at-
tributes (among the 29 original ones): 15 discrete attributes, 6 continuous attributes that have
been discretised and one (binary) class node. This dataset is made of 2800 learning data cases
and 972 test data cases.
chess

This dataset is also available at [Blake & Merz, 1998] (Chess – King+Rook versus King+Pawn).
It is a chess prediction task: determining if white can win the game according to the current
position described by 36 attributes (the class is the 37th). This dataset is made of 3196 data
cases we decompose into 2200 learning data cases and 996 test data cases.

Evaluation
The evaluation criterion is the good classification percentage on test data, with an α% confidence
interval proposed by [Bennani & Bossaert, 1996] (cf eq. 8).

I(α,N) =
T +

Z2
α

2N
± Zα

√

T (1−T)
N

+
Z2

α

4N2

1 +
Z2

α

N

(8)

where N is the sample size, T is the classifier good classification percentage and Zα = 1.96 for
α = 95%.

4.2.2 Results and interpretations

Classifier performances and confidence intervals corresponding to several structure learning al-
gorithms are given table 1. These results are compared with a k-nearest-neighbour classifier
(k = 9).

Notice that the memory crash obtained with PC algorithm on medium-sized datasets is due
to the actual implementation of this method. [Spirtes et al., 2000] proposes a heuristic that can
be used on bigger datasets than the actual implementation can.

For simple classification problems like asia, a naive bayes classifier gives as good results as
complex algorithms or as the KNN methods. We can also point up that the tree search method
(MWST) gives similar or better results than naive bayes for our datasets. It appears judicious
to use this simple technic instead of the naive structure. Contrary to our intuition the TANB
classifier gives little worse results that the naive bayes classifier except on heart dataset where
the results are much worse and on letter problem where it has given the best recognition
rate (except if we consider the KNN). Even if this method permits to relax the conditional
independencies between the observations, it also increases the network complexity, and then the
number of parameters that we have to estimate is too big for our dataset length.

For more complex problems like chess, structure learning algorithms obtain better perfor-
mances than naive bayes classifier.

21

asia heart autralian letter thyroid chess

att, L, T 8, 2000, 1000 14, 189, 81 15, 500, 190 17, 15000, 5000 22, 2800, 972 37, 2200, 996

NB 86.5%[84.2;88.5] 87.6%[78.7;93.2] 87.9%[82.4;91.8] 73.5%[72.2;74.7] 95.7%[94.2;96.9] 86.6%[84.3;88.6]

TANB 86.5%[84.2;88.5] 81.5%[71.6;88.5] 86.3%[80.7;90.5] 85.3%[84.3;86.3] 95.4%[93.8;96.6] 86.4%[84.0;88.4]

MWST-bic 86.5%[84.2;88.5] 86.4%[77.3;92.3] 87.4%[81.8;91.4] 74.1%[72.9;75.4] 96.8%[95.4;97.8] 89.5%[87.3;91.3]

MWST-mi 86.5%[84.2;88.5] 82.7%[73.0;89.5] 85.8%[80.1;90.1] 74.9%[73.6;76.1] 96.1%[94.6;97.2] 89.5%[87.3;91.3]

PC 84.6%[82.2;86.8] 85.2%[75.7;91.3] 86.3%[80.7;90.5] memory crash memory crash memory crash

K2 86.5%[84.2;88.5] 83.9%[74.4;90.4] 83.7%[77.8;88.3] 74.9%[73.6;76.1] 96.3%[94.9;97.4] 92.8%[90.9;94.3]

K2+T 86.5%[84.2;88.5] 81.5%[71.6;88.5] 84.2%[78.3;88.8] 74.9%[73.6;76.1] 96.3%[94.9;97.4] 92.6%[90.7;94.1]

K2-T 86.5%[84.2;88.5] 76.5%[66.2;84.5] 85.8%[80.1;90.1] 36.2%[34.9;37.6] 96.1%[94.6;97.2] 93.0%[91.2;94.5]

MCMC∗ 86.44% 84.20% 80.00% 72.96% 96.17% 95.62%
GS 86.5%[84.2;88.5] 85.2%[75.8;91.4] 86.8%[81.3;91.0] 74.9%[73.6;76.1] 96.2%[94.7;97.3] 94.6%[93.0;95.9]

GS+T 86.2%[83.9;88.3] 82.7%[73.0;89.5] 86.3%[80.7;90.5] 74.9%[73.6;76.1] 95.9%[94.4;97.0] 92.8%[90.9;94.3]

GES 86.5%[84.2;88.5] 85.2%[75.8;91.4] 84.2%[78.3;88.8] 74.9%[73.6;76.1] 95.9%[94.4;97.0] 93.0%[91.2;94.5]

SEM 86.5%[84.2;88.5] 80.2%[70.2;87.5] 74.2%[67.5;80.0] memory crash 96.2%[94.7;97.3] 89.2%[87.1;91.0]

kNN 86.5%[84.2;88.5] 85.2%[75.8;91.4] 80.5%[74.3;85.6] 94.8%[94.2;95.5] 98.8%[97.8;99.4] 94.0%[92.3;95.4]

Table 1: Good classification percentage on test data and 95% confidence interval for classifiers obtained
with several structure learning algorithms (Naive Bayes, Tree Augmented Naive Bayes with Mutual
Information score, Maximum Weight Spanning Tree with Mutual Information or BIC score, PC, K2
initialisate with [class node , observation nodes with numerous order] or with MWST or inverse MWST
initialisation, MCMC (∗ As this method is not deternimistic the results are meaned over five runs),
Greedy Search starting with an empty graph or with MWST tree, Gready Equivalent Search and Struc-
tural EM dealing with 20% of missing data. These results are compared with a k-nearest-neighbour
classifier (k = 9).

Differing to the previous structure search experience, the several initialisations we use with
the K2 algorithm do not lead to an improvement of the classification rate. Nevertheless, using
another method to choose the initial order permits to stabilize the method.

The MCMC method gives poor results for problems with a small number of nodes but seems
to be able to find very good structures as the number of nodes increases.

Surprisingly, the Greedy Search does not find a structure with a better classification rate,
although this method parses the entire dags space. It can be explained by the size of the dag
space and the great number of local optima in it.

In theory, the Greedy Equivalent Search is the most advanced score based method of those
we tested. In the previous experiments, it lead to the finding of high-scoring structures. But
over our classification problems, its results are out-performed by those obtained by a classical
greedy search.

On the other hand, Structural EM successfully manages to deal with incomplete datasets
and obtains results similar to other methods with 20% of missing data.

The methods we used do not give better results than the k-nearest neighbor classifier. But
we can notice that the resulting Bayesian network can also be used in many ways. For instance
by infering on other nodes than the class one, by interpretating the structure or by dealing with
missing data.

22

5 Conclusions and future work

Learning Bayesian network structure from data is a difficult problem for which we reviewed the
main existing methods.

Our first experiment allowed us to evaluate the precision of these methods retrieving a
known graph. Results show us that finding weak relations between attributes is difficult when
the sample size is too small. For most methods, random initializations can be replaced effectively
by initializations issued from a simple algorithm like MWST.

Our second experiment permited to evaluate the effectiveness of these methods for classifi-
cation tasks. Here, we have shown that a good structure search can lead to results similar to the
k-NN method but can also be used in other ways (structure interpretating, inference on other
nodes and dealing with incomplete data). Moreover, simple methods like Naive Bayes or MWST
give results as good as more complex methods on simple problems (i.e. with few nodes).

Recent works show that parsing the Markov equivalent space (cf definition 3) instead of the
dags space leads to optimal results. Munteanu et al. [Munteanu & Bendou, 2002] proved that
this space has better properties and [Chickering, 2002a, Castelo & Kocka, 2002] propose a new
structure learning in this space. Moreover [Chickering, 2002a] proved the optimality of his GES
method. In our experiments, this method has returned the best results regarding the scoring
function, but if we consider the editing distance or the classification rate, the results are not so
satisfying.

Adapting existing methods to deal with missing data is very important while dealing with
realistic problems. The SEM algorithm performs a greedy search in the dags space but the
same principle could be used with other algorithms (MWST for instance) in order to quickly find
a good structure with incomplete data. Some initialization problems are also yet to be solved.
Finally, the final step could consist in adapting the Structural EM principle to Markov equivalent
search methods.

Acknowledgements

This work was supported in part by the IST Programme of the European Community, under the
PASCAL Network of Excellence, IST-2002-506778. This publication only reflects the authors’
views.

References

[Andersen et al., 1989] Andersen S., Olesen K., Jensen F. & Jensen F. (1989). Hugin - a
shell for building bayesian belief universes for expert systems. Proceedings of the 11th Inter-
national Joint Conference on Artificial Intelligence, p. 1080–1085. http://www.hugin.com/.

[Auvray & Wehenkel, 2002] Auvray V. & Wehenkel L. (2002). On the construction of the
inclusion boundary neighbourhood for markov equivalence classes of bayesian network struc-
tures. In A. Darwiche & N. Friedman, Eds., Proceedings of the 18th Conference on
Uncertainty in Artificial Intelligence (UAI-02), p. 26–35, S.F., Cal.: Morgan Kaufmann
Publishers.

[Bennani & Bossaert, 1996] Bennani Y. & Bossaert F. (1996). Predictive neural networks for
traffic disturbance detection in the telephone network. In Proceedings of IMACS-CESA’96,
Lille, France.

23

[Blake & Merz, 1998] Blake C. & Merz C. (1998). UCI repository of machine learning
databases. http://www.ics.uci.edu/˜mlearn/MLRepository.html.

[Bouckaert, 1993] Bouckaert R. R. (1993). Probabilistic network construction using the min-
imum description length principle. Lecture Notes in Computer Science, 747, 41–48.

[Bøttcher & Dethlefsen, 2003] Bøttcher S. G. & Dethlefsen C. (2003). Deal: A package
for learning bayesian networks.

[Castelo & Kocka, 2002] Castelo R. & Kocka T. (2002). Towards an inclusion driven learn-
ing of bayesian networks. Rapport interne UU-CS-2002-05, Institute of information and
computing sciences, University of Utrecht.

[Cheng et al., 2002] Cheng J., Greiner R., Kelly J., Bell D. & Liu W. (2002). Learning
Bayesian networks from data: An information-theory based approach. Artificial Intelligence,
137(1–2), 43–90.

[Chickering, 1996] Chickering D. (1996). Learning equivalence classes of Bayesian network
structures. In E. Horvitz & F. Jensen, Eds., Proceedings of the 12th Conference on Un-
certainty in Artificial Intelligence (UAI-96), p. 150–157, San Francisco: Morgan Kaufmann
Publishers.

[Chickering, 2002a] Chickering D. M. (2002a). Learning equivalence classes of bayesian-
network structures. Journal of machine learning research, 2, 445–498.

[Chickering, 2002b] Chickering D. M. (2002b). Optimal structure identification with greedy
search. Journal of Machine Learning Research, 3, 507–554.

[Chow & Liu, 1968] Chow C. & Liu C. (1968). Approximating discrete probability distribu-
tions with dependence trees. IEEE Transactions on Information Theory, 14(3), 462–467.

[Cooper & Herskovits, 1992] Cooper G. & Herskovits E. (1992). A bayesian method for the
induction of probabilistic networks from data. Maching Learning, 9, 309–347.

[Dempster et al., 1977] Dempster A., Laird N. & Rubin D. (1977). Maximum likelihood
from incompete data via the EM algorithm. Journal of the Royal Statistical Society, B 39,
1–38.

[Dor & Tarsi, 1992] Dor D. & Tarsi M. (1992). A simple algorithm to construct a consistent
extension of a partially oriented graph. Rapport interne R-185, Cognitive Systems Labora-
tory, UCLA Computer Science Department.

[François & Leray, 2004] François O. & Leray P. (2004). évaluation d’algorithme
d’apprentissage de structure dans les réseaux bayésiens. In 14ieme Congrès francophone
de Reconnaissance des formes et d’Intelligence artificielle, p. 1453–1460: LAAS-CNRS.

[Friedman, 1998] Friedman N. (1998). The Bayesian structural EM algorithm. In G. F.
Cooper & S. Moral, Eds., Proceedings of the 14th Conference on Uncertainty in Ar-
tificial Intelligence (UAI-98), p. 129–138, San Francisco: Morgan Kaufmann.

[Friedman et al., 1997a] Friedman N., Geiger D. & Goldszmidt M. (1997a). Bayesian
network classifiers. Machine Learning, 29(2-3), 131–163.

24

[Friedman et al., 1997b] Friedman N., Goldszmidt M., Heckerman D. & Russell S.
(1997b). Challenge: What is the impact of bayesian networks on learning?, Proceed-
ings of the 15’th International Joint Conference on Artificial Intelligence (NIL-97), 10-15.
http://www.cs.huji.ac.il/labs/compbio/Repository/.

[Geiger, 1992] Geiger D. (1992). An entropy-based learning algorithm of bayesian conditional
trees. In Uncertainty in Artificial Intelligence: Proceedings of the Eighth Conference (UAI-
1992), p. 92–97, San Mateo, CA: Morgan Kaufmann Publishers.

[Heckerman et al., 1994] Heckerman D., Geiger D. & Chickering M. (1994). Learning
Bayesian networks: The combination of knowledge and statistical data. In R. L. de Man-
taras & D. Poole, Eds., Proceedings of the 10th Conference on Uncertainty in Artificial
Intelligence, p. 293–301, San Francisco, CA, USA: Morgan Kaufmann Publishers.

[Jensen, 1996] Jensen F. V. (1996). An introduction to Bayesian Networks. Taylor and Francis,
London, United Kingdom.

[Jordan, 1998] Jordan M. I. (1998). Learning in Graphical Models. The Netherlands: Kluwer
Academic Publishers.

[Keogh & Pazzani, 1999] Keogh E. & Pazzani M. (1999). Learning augmented bayesian classi-
fiers: A comparison of distribution-based and classification-based approaches. In Proceedings
of the Seventh International Workshop on Artificial Intelligence and Statistics, p. 225–230.

[Kim & Pearl, 1987] Kim J. & Pearl J. (1987). Convice; a conversational inference consolida-
tion engine. IEEE Trans. on Systems, Man and Cybernetics, 17, 120–132.

[Lauritzen & Speigelhalter, 1988] Lauritzen S. & Speigelhalter D. (1988). Local compu-
tations with probabilities on graphical structures and their application to expert systems.
Royal statistical Society B, 50, 157–224.

[Leray et al., 2003] Leray P., Guilmineau S., Noizet G., Francois O., Feasson E. &
Minoc B. (2003). French BNT site. http://bnt.insa-rouen.fr/.

[Michie et al., 1994] Michie D., Spiegelhalter D. J. & Taylor C. C.
(1994). Machine Learning, Neural and Statistical Classification.
http://www.amsta.leeds.ac.uk/˜charles/statlog/

http://www.liacc.up.pt/ML/statlog/datasets/.

[Munteanu & Bendou, 2002] Munteanu P. & Bendou M. (2002). The eq framework for learn-
ing equivalence classes of bayesian networks. In First IEEE International Conference on
Data Mining (IEEE ICDM), p. 417–424, San José.

[Munteanu et al., 2001] Munteanu P., Jouffe L. & Wuillemin P. (2001). Bayesia lab.

[Murphy, 2001a] Murphy K. (2001a). The BayesNet Toolbox for Mat-
lab, Computing Science and Statistics: Proceedings of Interface, 33.
http://www.ai.mit.edu/˜murphyk/Software/BNT/bnt.html.

[Murphy, 2001b] Murphy K. P. (2001b). Active learning of causal bayes net structure.

[Norsys, 2003] Norsys (2003). Netica.

25

[O.Colot & El Matouat, 1994] O.Colot, C. Olivier P. C. & El Matouat A. (1994). In-
formation criteria and abrupt changes in probability laws. Signal Processing VII : Théorie
and Applications, p. 1855–1858.

[Pearl & Verma, 1991] Pearl J. & Verma T. S. (1991). A theory of inferred causation. In J. F.
Allen, R. Fikes & E. Sandewall, Eds., KR’91: Principles of Knowledge Representation
and Reasoning, p. 441–452, San Mateo, California: Morgan Kaufmann.

[Robinson, 1977] Robinson R. W. (1977). Counting unlabeled acyclic digraphs. In C. H. C.
Little, Ed., Combinatorial Mathematics V, volume 622 of Lecture Notes in Mathematics,
p. 28–43, Berlin: Springer.

[Scheines et al., 1994] Scheines R., Spirtes P., Glymour C. & Meek C. (1994). Tetrad ii:
Tools for discovery. Lawrence Erlbaum Associates, Hillsdale, NJ.

[Schwartz, 1978] Schwartz G. (1978). Estimating the dimension of a model. The Annals of
Statistics, 6(2), 461–464.

[Spirtes et al., 2000] Spirtes P., Glymour C. & Scheines R. (2000). Causation, Prediction,
and Search. The MIT Press, 2 edition.

[Sutherland & Henery, 1992] Sutherland A. I. & Henery R. J. (1992). Statlog - an ESPRIT
projecy for the comparison of statistical and logical learning algorithms. New Techniques
and Technologies for Statistics.

[Verma & Pearl, 1990] Verma T. & Pearl J. (1990). Equivalence and synthesis of causal
models. In in Proceedings Sixth Conference on Uncertainty and Artificial Intelligence, San
Francisco: Morgan Kaufmann.

26

