
1/20

Commonly-used Tricks

F. Noé1

Deep Learning Classes, FU Berlin 2018

2/20

Normalization versus Autoencoder error
Purpose: Move data close to x = 0 and where network nonlinearities are most effective.

Given Autoencoder E ,D with mean square error:

L(X;θ) =
1
N ∑

t
‖xt − x̂t‖22 =

1
N ∑

t
‖xt −D(E (xt ,θ E),θ D)‖22

Find the empirical mean x̄ and standard deviations
S = diag(σ1, ...,σn) and normalize:

xs = S−1 (x− x̄) .

We now solve the scaled autoencoding problem:

Ls(X;θ) =
1
N ∑

t
‖xs

t − x̂s
t‖

2
2 =

1
N ∑

t
‖xs

t −D(E (xs
t ,θ

s
E),θ s

D)‖22

Both the loss value and the network parameters are different.
In order to compute the original loss, we need to rescale it:

L(X;θ) =
1
N ∑

t
‖S(xs

t + x̄)−S(x̂s
t + x̄)‖22

=
1
N ∑

t
‖S(xs

t − x̂s
t)‖22 =

1
N ∑

t
‖xs

t − x̂s
t‖

2
σ

This can be seen as a new norm with weighting factors σ i .

2/20

Normalization versus Autoencoder error
Purpose: Move data close to x = 0 and where network nonlinearities are most effective.

Given Autoencoder E ,D with mean square error:

L(X;θ) =
1
N ∑

t
‖xt − x̂t‖22 =

1
N ∑

t
‖xt −D(E (xt ,θ E),θ D)‖22

Find the empirical mean x̄ and standard deviations
S = diag(σ1, ...,σn) and normalize:

xs = S−1 (x− x̄) .

We now solve the scaled autoencoding problem:

Ls(X;θ) =
1
N ∑

t
‖xs

t − x̂s
t‖

2
2 =

1
N ∑

t
‖xs

t −D(E (xs
t ,θ

s
E),θ s

D)‖22

Both the loss value and the network parameters are different.
In order to compute the original loss, we need to rescale it:

L(X;θ) =
1
N ∑

t
‖S(xs

t + x̄)−S(x̂s
t + x̄)‖22

=
1
N ∑

t
‖S(xs

t − x̂s
t)‖22 =

1
N ∑

t
‖xs

t − x̂s
t‖

2
σ

This can be seen as a new norm with weighting factors σ i .

2/20

Normalization versus Autoencoder error
Purpose: Move data close to x = 0 and where network nonlinearities are most effective.

Given Autoencoder E ,D with mean square error:

L(X;θ) =
1
N ∑

t
‖xt − x̂t‖22 =

1
N ∑

t
‖xt −D(E (xt ,θ E),θ D)‖22

Find the empirical mean x̄ and standard deviations
S = diag(σ1, ...,σn) and normalize:

xs = S−1 (x− x̄) .

We now solve the scaled autoencoding problem:

Ls(X;θ) =
1
N ∑

t
‖xs

t − x̂s
t‖

2
2 =

1
N ∑

t
‖xs

t −D(E (xs
t ,θ

s
E),θ s

D)‖22

Both the loss value and the network parameters are different.
In order to compute the original loss, we need to rescale it:

L(X;θ) =
1
N ∑

t
‖S(xs

t + x̄)−S(x̂s
t + x̄)‖22

=
1
N ∑

t
‖S(xs

t − x̂s
t)‖22 =

1
N ∑

t
‖xs

t − x̂s
t‖

2
σ

This can be seen as a new norm with weighting factors σ i .

2/20

Normalization versus Autoencoder error
Purpose: Move data close to x = 0 and where network nonlinearities are most effective.

Given Autoencoder E ,D with mean square error:

L(X;θ) =
1
N ∑

t
‖xt − x̂t‖22 =

1
N ∑

t
‖xt −D(E (xt ,θ E),θ D)‖22

Find the empirical mean x̄ and standard deviations
S = diag(σ1, ...,σn) and normalize:

xs = S−1 (x− x̄) .

We now solve the scaled autoencoding problem:

Ls(X;θ) =
1
N ∑

t
‖xs

t − x̂s
t‖

2
2 =

1
N ∑

t
‖xs

t −D(E (xs
t ,θ

s
E),θ s

D)‖22

Both the loss value and the network parameters are different.
In order to compute the original loss, we need to rescale it:

L(X;θ) =
1
N ∑

t
‖S(xs

t + x̄)−S(x̂s
t + x̄)‖22

=
1
N ∑

t
‖S(xs

t − x̂s
t)‖22 =

1
N ∑

t
‖xs

t − x̂s
t‖

2
σ

This can be seen as a new norm with weighting factors σ i .

3/20

Regularization
Purpose: To perform not only well on training data, but also on test data

Regularization algorithms modification learning algorithm in order
to reduce its generalization error but not its training error.
Most common idea: regularizing estimators by reducing its
variance on the price of increasing its bias.
Examples:

Penalizing certain ranges of parameter values (e.g., L0, L1, L2
constraints).
Data augmentaion: Increasing the training set size by exploiting
known invariances.
Ensemble methods: combine multiple hypotheses that explain the
training data.

3/20

Regularization
Purpose: To perform not only well on training data, but also on test data

Regularization algorithms modification learning algorithm in order
to reduce its generalization error but not its training error.
Most common idea: regularizing estimators by reducing its
variance on the price of increasing its bias.
Examples:

Penalizing certain ranges of parameter values (e.g., L0, L1, L2
constraints).
Data augmentaion: Increasing the training set size by exploiting
known invariances.
Ensemble methods: combine multiple hypotheses that explain the
training data.

3/20

Regularization
Purpose: To perform not only well on training data, but also on test data

Regularization algorithms modification learning algorithm in order
to reduce its generalization error but not its training error.
Most common idea: regularizing estimators by reducing its
variance on the price of increasing its bias.
Examples:

Penalizing certain ranges of parameter values (e.g., L0, L1, L2
constraints).
Data augmentaion: Increasing the training set size by exploiting
known invariances.
Ensemble methods: combine multiple hypotheses that explain the
training data.

4/20

Overfitting during training

5/20

Early Stopping
Purpose: To avoid overfitting as a function of training time

Returning the model with the minimal validation error during
training procedure, instead of minimal training error.
Hyperparameter selection algorithm where the number of training
steps is a hyperparameter.
Effectively restricts the optimization procedure to a small volume
of parameter space in the neighborhood of the initial parameter
value (Bishop 1995, Sjöberg and Ljung 1995).
Can be interpreted as a form of weight decay (Goodfellow,
Courville and Bengio, 2016).
Can be used to reduce training time by exiting when validation
error stops decreasing.
Frequently used, as it is very easy, inexpensive, and compatible with
any learning problem.

5/20

Early Stopping
Purpose: To avoid overfitting as a function of training time

Returning the model with the minimal validation error during
training procedure, instead of minimal training error.
Hyperparameter selection algorithm where the number of training
steps is a hyperparameter.
Effectively restricts the optimization procedure to a small volume
of parameter space in the neighborhood of the initial parameter
value (Bishop 1995, Sjöberg and Ljung 1995).
Can be interpreted as a form of weight decay (Goodfellow,
Courville and Bengio, 2016).
Can be used to reduce training time by exiting when validation
error stops decreasing.
Frequently used, as it is very easy, inexpensive, and compatible with
any learning problem.

5/20

Early Stopping
Purpose: To avoid overfitting as a function of training time

Returning the model with the minimal validation error during
training procedure, instead of minimal training error.
Hyperparameter selection algorithm where the number of training
steps is a hyperparameter.
Effectively restricts the optimization procedure to a small volume
of parameter space in the neighborhood of the initial parameter
value (Bishop 1995, Sjöberg and Ljung 1995).
Can be interpreted as a form of weight decay (Goodfellow,
Courville and Bengio, 2016).
Can be used to reduce training time by exiting when validation
error stops decreasing.
Frequently used, as it is very easy, inexpensive, and compatible with
any learning problem.

5/20

Early Stopping
Purpose: To avoid overfitting as a function of training time

Returning the model with the minimal validation error during
training procedure, instead of minimal training error.
Hyperparameter selection algorithm where the number of training
steps is a hyperparameter.
Effectively restricts the optimization procedure to a small volume
of parameter space in the neighborhood of the initial parameter
value (Bishop 1995, Sjöberg and Ljung 1995).
Can be interpreted as a form of weight decay (Goodfellow,
Courville and Bengio, 2016).
Can be used to reduce training time by exiting when validation
error stops decreasing.
Frequently used, as it is very easy, inexpensive, and compatible with
any learning problem.

5/20

Early Stopping
Purpose: To avoid overfitting as a function of training time

Returning the model with the minimal validation error during
training procedure, instead of minimal training error.
Hyperparameter selection algorithm where the number of training
steps is a hyperparameter.
Effectively restricts the optimization procedure to a small volume
of parameter space in the neighborhood of the initial parameter
value (Bishop 1995, Sjöberg and Ljung 1995).
Can be interpreted as a form of weight decay (Goodfellow,
Courville and Bengio, 2016).
Can be used to reduce training time by exiting when validation
error stops decreasing.
Frequently used, as it is very easy, inexpensive, and compatible with
any learning problem.

5/20

Early Stopping
Purpose: To avoid overfitting as a function of training time

Returning the model with the minimal validation error during
training procedure, instead of minimal training error.
Hyperparameter selection algorithm where the number of training
steps is a hyperparameter.
Effectively restricts the optimization procedure to a small volume
of parameter space in the neighborhood of the initial parameter
value (Bishop 1995, Sjöberg and Ljung 1995).
Can be interpreted as a form of weight decay (Goodfellow,
Courville and Bengio, 2016).
Can be used to reduce training time by exiting when validation
error stops decreasing.
Frequently used, as it is very easy, inexpensive, and compatible with
any learning problem.

6/20

Data Augmentation
Purpose: Improve generalization by increasing training data

1

1From Ahmad, Muhammad, Baik, PLoS ONE (2017)

7/20

Data Augmentation
Purpose: Improve generalization by increasing training data

Artificially increase training data by adding “fake” samples which
account for known invariances in the learning problem.
Example: regularize image classification problem by adding
translated and rotated copies of available training images to the
training data.
Careful: Invariances are defined with respect to the learning
problem. Example: a “9” rotated by 180° is no longer class 9 but
class 6.
Noise: Adding small amounts of noise should not affect
classification, but Neural networks are not to be very robust to noise
(Tang and Eliasmith, 2010).

7/20

Data Augmentation
Purpose: Improve generalization by increasing training data

Artificially increase training data by adding “fake” samples which
account for known invariances in the learning problem.
Example: regularize image classification problem by adding
translated and rotated copies of available training images to the
training data.
Careful: Invariances are defined with respect to the learning
problem. Example: a “9” rotated by 180° is no longer class 9 but
class 6.
Noise: Adding small amounts of noise should not affect
classification, but Neural networks are not to be very robust to noise
(Tang and Eliasmith, 2010).

7/20

Data Augmentation
Purpose: Improve generalization by increasing training data

Artificially increase training data by adding “fake” samples which
account for known invariances in the learning problem.
Example: regularize image classification problem by adding
translated and rotated copies of available training images to the
training data.
Careful: Invariances are defined with respect to the learning
problem. Example: a “9” rotated by 180° is no longer class 9 but
class 6.
Noise: Adding small amounts of noise should not affect
classification, but Neural networks are not to be very robust to noise
(Tang and Eliasmith, 2010).

7/20

Data Augmentation
Purpose: Improve generalization by increasing training data

Artificially increase training data by adding “fake” samples which
account for known invariances in the learning problem.
Example: regularize image classification problem by adding
translated and rotated copies of available training images to the
training data.
Careful: Invariances are defined with respect to the learning
problem. Example: a “9” rotated by 180° is no longer class 9 but
class 6.
Noise: Adding small amounts of noise should not affect
classification, but Neural networks are not to be very robust to noise
(Tang and Eliasmith, 2010).

8/20

Parameter Norm Penalties
Purpose: To limiting model capacity by penalizing certain parameter values

Add penalty term with hyperparameter α:

L̃(X,Y; θ) = L(X,Y; θ) + αΩ(θ)

Typically constraint only weights wij , not biases bi , as those
contribute less estimator variance and constraining them can
introduce much estimator bias.
L2 regularization: Ridge or Tikhonov regularization in linear
methods, weight decay in neural networks.
L1 regularization: Sparsity constraint, generates zero weights.

8/20

Parameter Norm Penalties
Purpose: To limiting model capacity by penalizing certain parameter values

Add penalty term with hyperparameter α:

L̃(X,Y; θ) = L(X,Y; θ) + αΩ(θ)

Typically constraint only weights wij , not biases bi , as those
contribute less estimator variance and constraining them can
introduce much estimator bias.
L2 regularization: Ridge or Tikhonov regularization in linear
methods, weight decay in neural networks.
L1 regularization: Sparsity constraint, generates zero weights.

8/20

Parameter Norm Penalties
Purpose: To limiting model capacity by penalizing certain parameter values

Add penalty term with hyperparameter α:

L̃(X,Y; θ) = L(X,Y; θ) + αΩ(θ)

Typically constraint only weights wij , not biases bi , as those
contribute less estimator variance and constraining them can
introduce much estimator bias.
L2 regularization: Ridge or Tikhonov regularization in linear
methods, weight decay in neural networks.
L1 regularization: Sparsity constraint, generates zero weights.

8/20

Parameter Norm Penalties
Purpose: To limiting model capacity by penalizing certain parameter values

Add penalty term with hyperparameter α:

L̃(X,Y; θ) = L(X,Y; θ) + αΩ(θ)

Typically constraint only weights wij , not biases bi , as those
contribute less estimator variance and constraining them can
introduce much estimator bias.
L2 regularization: Ridge or Tikhonov regularization in linear
methods, weight decay in neural networks.
L1 regularization: Sparsity constraint, generates zero weights.

9/20

Parameter Tying and Sharing
Purpose: To limiting model capacity by restricting parameter range or reducing number of
parameters

Parameter tying: Two sets of parameters are assumed to be
similar, we add a constraint of the form:∥∥∥w(A)−w(B)

∥∥∥2
2

Parameter sharing: Two sets of parameters are equal,
Example: convolutional kernels in ConvNets are applied
translationally invariant at all image positions.
Parameter sharing can dramatically reduce the number of
parameters.
Natural way to encode previous knowledge about invariances.

9/20

Parameter Tying and Sharing
Purpose: To limiting model capacity by restricting parameter range or reducing number of
parameters

Parameter tying: Two sets of parameters are assumed to be
similar, we add a constraint of the form:∥∥∥w(A)−w(B)

∥∥∥2
2

Parameter sharing: Two sets of parameters are equal,
Example: convolutional kernels in ConvNets are applied
translationally invariant at all image positions.
Parameter sharing can dramatically reduce the number of
parameters.
Natural way to encode previous knowledge about invariances.

10/20

Multi-Task Learning
Purpose: Improve generalization by increasing training data

Improve generalization by sharing representation for different
learning tasks with the same input.

h(1) → y(1)
↗

x → hshared

↘
h(1) → y(2)

When sharing part of the representation is useful to predict both
tasks, this effectively increases the available training data and puts
more pressure on the model to generalize well.

10/20

Multi-Task Learning
Purpose: Improve generalization by increasing training data

Improve generalization by sharing representation for different
learning tasks with the same input.

h(1) → y(1)
↗

x → hshared

↘
h(1) → y(2)

When sharing part of the representation is useful to predict both
tasks, this effectively increases the available training data and puts
more pressure on the model to generalize well.

11/20

Multi-Task Learning
Example: AlphaGo Zero

1

1From https://applied-data.science/blog/alphago-zero-cheat-sheet

12/20

Ensemble methods
Purpose: Train and average ensemble of learners to avoid susceptibility to individual test set errors

Model averaging: Train several different models separately, then
have all of the models vote on the output for test examples.
Bagging (“bootstrap aggregating”, Breiman 1994): construct k
different datasets, sampled from the original dataset with
replacement.
Example: k regression models, each model makes an error
εi ∼N (0,Σ) with variances σ2

ii = v and covariances σ2
ij = c.

Expected squared error of the ensemble predictor:

E

(1
k ∑

i
εi

)2
=

1
k2E

[
∑
i

(
ε
2
i + ∑

j 6=i
εi εj

)]
=

1
k v +

k−1
k c.

Worst case: errors are perfectly correlated, c = v , MSE stays v .
Best case: errors perfectly uncorrelated, c = 0, MSE is v/k and
reduces with ensemble size.
Ensemble is at least as good as any of its members, but often
significnantly better.

Disadvantage: training multiple models is very expensive.

12/20

Ensemble methods
Purpose: Train and average ensemble of learners to avoid susceptibility to individual test set errors

Model averaging: Train several different models separately, then
have all of the models vote on the output for test examples.
Bagging (“bootstrap aggregating”, Breiman 1994): construct k
different datasets, sampled from the original dataset with
replacement.
Example: k regression models, each model makes an error
εi ∼N (0,Σ) with variances σ2

ii = v and covariances σ2
ij = c.

Expected squared error of the ensemble predictor:

E

(1
k ∑

i
εi

)2
=

1
k2E

[
∑
i

(
ε
2
i + ∑

j 6=i
εi εj

)]
=

1
k v +

k−1
k c.

Worst case: errors are perfectly correlated, c = v , MSE stays v .
Best case: errors perfectly uncorrelated, c = 0, MSE is v/k and
reduces with ensemble size.
Ensemble is at least as good as any of its members, but often
significnantly better.

Disadvantage: training multiple models is very expensive.

12/20

Ensemble methods
Purpose: Train and average ensemble of learners to avoid susceptibility to individual test set errors

Model averaging: Train several different models separately, then
have all of the models vote on the output for test examples.
Bagging (“bootstrap aggregating”, Breiman 1994): construct k
different datasets, sampled from the original dataset with
replacement.
Example: k regression models, each model makes an error
εi ∼N (0,Σ) with variances σ2

ii = v and covariances σ2
ij = c.

Expected squared error of the ensemble predictor:

E

(1
k ∑

i
εi

)2
=

1
k2E

[
∑
i

(
ε
2
i + ∑

j 6=i
εi εj

)]
=

1
k v +

k−1
k c.

Worst case: errors are perfectly correlated, c = v , MSE stays v .
Best case: errors perfectly uncorrelated, c = 0, MSE is v/k and
reduces with ensemble size.
Ensemble is at least as good as any of its members, but often
significnantly better.

Disadvantage: training multiple models is very expensive.

12/20

Ensemble methods
Purpose: Train and average ensemble of learners to avoid susceptibility to individual test set errors

Model averaging: Train several different models separately, then
have all of the models vote on the output for test examples.
Bagging (“bootstrap aggregating”, Breiman 1994): construct k
different datasets, sampled from the original dataset with
replacement.
Example: k regression models, each model makes an error
εi ∼N (0,Σ) with variances σ2

ii = v and covariances σ2
ij = c.

Expected squared error of the ensemble predictor:

E

(1
k ∑

i
εi

)2
=

1
k2E

[
∑
i

(
ε
2
i + ∑

j 6=i
εi εj

)]
=

1
k v +

k−1
k c.

Worst case: errors are perfectly correlated, c = v , MSE stays v .
Best case: errors perfectly uncorrelated, c = 0, MSE is v/k and
reduces with ensemble size.
Ensemble is at least as good as any of its members, but often
significnantly better.

Disadvantage: training multiple models is very expensive.

13/20

Dropout (Srivastava et al., 2014)
Purpose: Computationally cheap approximation to model averaging over different network
architectures

Approximates Bagging with exponentially many neural networks.
Trains ensemble of all sub-networks formed by removing input or
hidden units.

1

In small networks, a significant proportion of subnetworks have no input-output
connection. This problem becomes insignificant for large networks.

1From Goodfellow, Bengio and Courville: Deep Learning, MIT Press (2016)

13/20

Dropout (Srivastava et al., 2014)
Purpose: Computationally cheap approximation to model averaging over different network
architectures

Approximates Bagging with exponentially many neural networks.
Trains ensemble of all sub-networks formed by removing input or
hidden units.

1

In small networks, a significant proportion of subnetworks have no input-output
connection. This problem becomes insignificant for large networks.

1From Goodfellow, Bengio and Courville: Deep Learning, MIT Press (2016)

14/20

Dropout (Srivastava et al., 2014)
Purpose: Computationally cheap approximation to model averaging over different network
architectures

Mask vector µ, µi ∈{0,1}. Defines which neurons are active.
Training: For each minibatch, sample µ with probability pkeep

i to
keep neuron i . Usual forward and backward propagation.
Typically values: input: pkeep

i = 0.8, hidden: pkeep
i = 0.5.

Advantages of Dropout:
Cheap: training and inference little more expensive than without
dropout (generation and application of µ vector, scaling weights).
General: works with nearly any NN model and SGD.

1

1From Goodfellow, Bengio and Courville: Deep Learning, MIT Press (2016)

14/20

Dropout (Srivastava et al., 2014)
Purpose: Computationally cheap approximation to model averaging over different network
architectures

Mask vector µ, µi ∈{0,1}. Defines which neurons are active.
Training: For each minibatch, sample µ with probability pkeep

i to
keep neuron i . Usual forward and backward propagation.
Typically values: input: pkeep

i = 0.8, hidden: pkeep
i = 0.5.

Advantages of Dropout:
Cheap: training and inference little more expensive than without
dropout (generation and application of µ vector, scaling weights).
General: works with nearly any NN model and SGD.

1

1From Goodfellow, Bengio and Courville: Deep Learning, MIT Press (2016)

14/20

Dropout (Srivastava et al., 2014)
Purpose: Computationally cheap approximation to model averaging over different network
architectures

Mask vector µ, µi ∈{0,1}. Defines which neurons are active.
Training: For each minibatch, sample µ with probability pkeep

i to
keep neuron i . Usual forward and backward propagation.
Typically values: input: pkeep

i = 0.8, hidden: pkeep
i = 0.5.

Advantages of Dropout:
Cheap: training and inference little more expensive than without
dropout (generation and application of µ vector, scaling weights).
General: works with nearly any NN model and SGD.

1

1From Goodfellow, Bengio and Courville: Deep Learning, MIT Press (2016)

14/20

Dropout (Srivastava et al., 2014)
Purpose: Computationally cheap approximation to model averaging over different network
architectures

Mask vector µ, µi ∈{0,1}. Defines which neurons are active.
Training: For each minibatch, sample µ with probability pkeep

i to
keep neuron i . Usual forward and backward propagation.
Typically values: input: pkeep

i = 0.8, hidden: pkeep
i = 0.5.

Advantages of Dropout:
Cheap: training and inference little more expensive than without
dropout (generation and application of µ vector, scaling weights).
General: works with nearly any NN model and SGD.

1

1From Goodfellow, Bengio and Courville: Deep Learning, MIT Press (2016)

15/20

Dropout as a Bagging method

Suppose model outputs probability distribution p(y | x).
Bagging: arithmetic mean over bootstrap samples:

1
k

k
∑
i=1

p(i)(y | x)

Dropout: arithmetic mean over all masks

∑
µ

p(µ)p(y | x,µ)

Cannot be directly evaluated (exponentially many masks).
Weight scaling inference rule (Hinton et al., 2012): approximate
the geometric mean of p(y | x,µ) by evaluating p(y | x) in the model
with all units, but with the weights going out of unit i multiplied by
the probability of including unit i .

Motivation: capture the expected value of the output from that unit.
Accuracy of this algorithm is not theoretically understood, but works
well in practice.
With typical choice pkeep

i = 0.5, weight scaling results in dividing
weights by 2 after training.

15/20

Dropout as a Bagging method

Suppose model outputs probability distribution p(y | x).
Bagging: arithmetic mean over bootstrap samples:

1
k

k
∑
i=1

p(i)(y | x)

Dropout: arithmetic mean over all masks

∑
µ

p(µ)p(y | x,µ)

Cannot be directly evaluated (exponentially many masks).
Weight scaling inference rule (Hinton et al., 2012): approximate
the geometric mean of p(y | x,µ) by evaluating p(y | x) in the model
with all units, but with the weights going out of unit i multiplied by
the probability of including unit i .

Motivation: capture the expected value of the output from that unit.
Accuracy of this algorithm is not theoretically understood, but works
well in practice.
With typical choice pkeep

i = 0.5, weight scaling results in dividing
weights by 2 after training.

16/20

Adversarial Attacks - Adversarial Training
Purpose: Improve robustness against random or intended perturbations

Neural networks have reached human performance in several
benchmark tasks. What about human-level understanding?
Adversarial attacks (trying to fake the network):

Intended perturbation: Accuracy reduced to random with test
examples with small

∥∥∥xtest
i −xtrain

j

∥∥∥ but large
∥∥∥y test

i −y train
j

∥∥∥ for given
i , j.
Random perturbation: Add Gaussian noise with a very small
amplitude. Picture indistinguishable for humans, but breaks neural
network performance (Szegedy et al. 2014).

1

Adversarial training: include adversarial attacks in the training
data to force predictions to be locally constant near training data.

1From Goodfellow, Bengio and Courville: Deep Learning, MIT Press (2016)

16/20

Adversarial Attacks - Adversarial Training
Purpose: Improve robustness against random or intended perturbations

Neural networks have reached human performance in several
benchmark tasks. What about human-level understanding?
Adversarial attacks (trying to fake the network):

Intended perturbation: Accuracy reduced to random with test
examples with small

∥∥∥xtest
i −xtrain

j

∥∥∥ but large
∥∥∥y test

i −y train
j

∥∥∥ for given
i , j.
Random perturbation: Add Gaussian noise with a very small
amplitude. Picture indistinguishable for humans, but breaks neural
network performance (Szegedy et al. 2014).

1

Adversarial training: include adversarial attacks in the training
data to force predictions to be locally constant near training data.

1From Goodfellow, Bengio and Courville: Deep Learning, MIT Press (2016)

16/20

Adversarial Attacks - Adversarial Training
Purpose: Improve robustness against random or intended perturbations

Neural networks have reached human performance in several
benchmark tasks. What about human-level understanding?
Adversarial attacks (trying to fake the network):

Intended perturbation: Accuracy reduced to random with test
examples with small

∥∥∥xtest
i −xtrain

j

∥∥∥ but large
∥∥∥y test

i −y train
j

∥∥∥ for given
i , j.
Random perturbation: Add Gaussian noise with a very small
amplitude. Picture indistinguishable for humans, but breaks neural
network performance (Szegedy et al. 2014).

1

Adversarial training: include adversarial attacks in the training
data to force predictions to be locally constant near training data.

1From Goodfellow, Bengio and Courville: Deep Learning, MIT Press (2016)

16/20

Adversarial Attacks - Adversarial Training
Purpose: Improve robustness against random or intended perturbations

Neural networks have reached human performance in several
benchmark tasks. What about human-level understanding?
Adversarial attacks (trying to fake the network):

Intended perturbation: Accuracy reduced to random with test
examples with small

∥∥∥xtest
i −xtrain

j

∥∥∥ but large
∥∥∥y test

i −y train
j

∥∥∥ for given
i , j.
Random perturbation: Add Gaussian noise with a very small
amplitude. Picture indistinguishable for humans, but breaks neural
network performance (Szegedy et al. 2014).

1

Adversarial training: include adversarial attacks in the training
data to force predictions to be locally constant near training data.

1From Goodfellow, Bengio and Courville: Deep Learning, MIT Press (2016)

17/20

Transposed Convolutions
Purpose: Make convolved layers great again

To increase the dimension, we consider x ∈ Rp, y ∈ Rq, p ≤ q and
convolve using

y = W>x

W> ∈ Rq×p increases the size of the input array and has learnable
parameters:

W> =


w1
... . . .

wk w1
.

wk



17/20

Transposed Convolutions
Purpose: Make convolved layers great again

To increase the dimension, we consider x ∈ Rp, y ∈ Rq, p ≤ q and
convolve using

y = W>x

W> ∈ Rq×p increases the size of the input array and has learnable
parameters:

W> =


w1
... . . .

wk w1
.

wk



18/20

Unpooling
Purpose: Make pooled layers great

again 1

aFrom Zeiler and Fergus, https://arxiv.org/pdf/1311.2901v3.pdf

19/20

Residual Networks
Purpose: Make deep networks trainable

With most network architectures, when adding layers (increasing
depth), the training loss first reduces but then increases.
Indicates training problem – adding layers make the network more
expressive, so training loss should be non-increasing.
→ also affects the test loss.
Residual Networks (He, Zhang, Ren, Sun, 2015) enable training of
very deep networks.

19/20

Residual Networks
Purpose: Make deep networks trainable

With most network architectures, when adding layers (increasing
depth), the training loss first reduces but then increases.
Indicates training problem – adding layers make the network more
expressive, so training loss should be non-increasing.
→ also affects the test loss.
Residual Networks (He, Zhang, Ren, Sun, 2015) enable training of
very deep networks.

19/20

Residual Networks
Purpose: Make deep networks trainable

With most network architectures, when adding layers (increasing
depth), the training loss first reduces but then increases.
Indicates training problem – adding layers make the network more
expressive, so training loss should be non-increasing.
→ also affects the test loss.
Residual Networks (He, Zhang, Ren, Sun, 2015) enable training of
very deep networks.

20/20

Residual Networks
Purpose: Make deep networks trainable

As in LSTMs, ResNets introduces a short-cut path that can carry
gradients deep.
ResNets are state-of-the-art in many problems (CIFAR, ImageNet,
AlphaGo Zero).

20/20

Residual Networks
Purpose: Make deep networks trainable

As in LSTMs, ResNets introduces a short-cut path that can carry
gradients deep.
ResNets are state-of-the-art in many problems (CIFAR, ImageNet,
AlphaGo Zero).

