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Classification

Classification problems have discrete output variables (categories).
Previously, we have used ordinary regression norms, such as
‖y− ŷ‖22. Here, we want to go to a probabilistic description.
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Reminder
Minimization of cost functions

Symbols
Meaning Symbol Shape
Feature vector x Rn

Feature matrix X RN×n

Label vector y Rl

Label matrix Y RN×l

Parameters θ Rd

Loss / Cost function C(X, Y; θ) R

Cost function C quantifies how well a given model with parameters θ

explains the observations X.

Model fitting

θ̂ = argminθ C(X,Y; θ)

Minimimizing the cost C is equivalent to maximizing the score −C .
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Logistic Regression
Shallow-learning basis of classification problems

Input: Training data (X,y) with feature matrix X ∈ RN×n and
one-dimensional binary outputs y ∈ {0,1} (2 classes).
Goal: Predict x→ ŷ with minimal error.
Idea 1: Perceptron. Define linear model with weights w ∈ Rn and
offset b ∈ R

si = x>i w + b.

Map si through sign function in order to turn into a classifyer:

ŷi = sign(si ) =

{
1 si ≥ 0
0 si < 0
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Logistic Regression
Shallow-learning basis of classification problems

It often desirable to have a soft classifier with ŷ ∈ [0,1]⊂ R:
noisy data → not all data points can be unabiguously assigned.
enables computation of gradients → can use deep structures with
backpropagation.

Idea 2: Define linear model with weights w ∈ Rn and offset b ∈ R

si = x>i w + b.

Map si through logistic (sigmoid) function:

ŷi = σ(si ) =
1

1+ e−si

Note: 1−σ(si ) = σ(−si )
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Softmax Regression
Statistical mechanics energy model

Statistical mechanical system with two states 0 and 1 and energies
ε0 = 0 (reference) and ε1.
Boltzmann weights:

w0 = e−ε0 = 1
w1 = e−ε1

Probability:

p1 =
w1

w0 + w1
=

e−ε1

1+ e−ε1
=

1
eε1 +1 = σ(−ε1)

Logistic regression is obtained with model ε1 =−x>i w−b.
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Logistic Regression
Shallow-learning basis of classification problems

Probability to belong to category 0 or 1:

p(yi = 1 | xi ,θ) = σ(x>i w + b) =
1

1+ e−x>i w−b

p(yi = 0 | xi ,θ) = 1−p(yi = 1 | xi ; θ)

Likelihood of data set {xi ,yi}i=1...N under the model:

p({xi ,yi} | θ) =
N
∏
i=1

[
σ(x>i w + b)

]yi [
1−σ(x>i w + b)

]1−yi
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Logistic Regression
Shallow-learning basis of classification problems

Log-likelihood:

L(θ) =
N
∑
i=1

yi logσ(x>i w + b) + (1−yi ) log
[
1−σ(x>i w + b)

]
Maximum likelihood estimator:

θ̂ = argmax
θ

L(θ) = argmin
θ
{−L(θ)}

Cross-entropy:

C(θ) =−L(θ)

=−
N
∑
i=1

yi logσ(x>i w + b) + (1−yi ) log
[
1−σ(x>i w + b)

]
As in linear regression, the cross-entropy is often equipped with
regularizers.
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Logistic Regression
Shallow-learning basis of classification problems

Minimize cross-entropy, using σ ′(x) = σ(x)(1−σ(x)):

∂C
∂wk

=−
N
∑
i=1

yi
σ ′(x>i w + b)

σ(x>i w + b)
xik + (1−yi )

−σ ′(x>i w + b)

1−σ(x>i w + b)
xik

=−
N
∑
i=1

yi
[
1−σ(x>i w + b)

]
xik − (1−yi )σ(x>i w + b)xik

=
N
∑
i=1

[
σ(x>i w + b)−yi

]
xik

Likewise
∂C
∂b =

N
∑
i=1

σ(x>i w + b)−yi

Using θ = (b,w1, ...,wn), results in the gradient:

∇C(θ) =
N
∑
i=1

[
σ(x>i w + b)−yi

]( 1
w

)
No closed-form solution → numerical optimization.
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Softmax Regression
Shallow-learning basis of classification problems

Regression to multiple classes: {1,2, ..., l}.
One-hot encoding: yi ∈ Rl with:

yik =

{
1 ci = k
0 else

.

Probability of xi to be in class k: Softmax function

p(yik = 1 | xi ;θ) = Sk(xi ;θ) =
ex>i wk+bk

∑
l
j=1 ex>i wj+bj

Corresponds to statistical mechanics model with energies
εj =−x>i wj −bj .
Likelihood:

p({xi ,yi} | θ) =
N
∏
i=1

l
∏
k=1

[Sk(xi ;θ)]yik [1−Sk(xi ;θ)]1−yik
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Softmax Regression
Shallow-learning basis of classification problems

Loss function:

C(θ) =−
N
∑
i=1

l
∑
k=1

yik logSk(xi ;θ) + (1−yik) log [1−Sk(xi ;θ)]

For l = 1, we recover the cross-entropy for logistic regression.
For l = 2, use that yi1 = 1−yi2 and S2(xi ;θ) = 1−S1(xi ;θ), and
obtain:

C(θ) =−2
N
∑
i=1

yi1 logS1(xi ;θ) + (1−yi1) log [1−S1(xi ;θ)]

Equivalent with cross-entropy for logistic regression (up to constant
factor).
For a two-class classification problem, it is equivalent to use one
output neuron with logistic activation or two output neurons with
softmax activation.



11/28

Softmax Regression
Shallow-learning basis of classification problems

Loss function:

C(θ) =−
N
∑
i=1

l
∑
k=1

yik logSk(xi ;θ) + (1−yik) log [1−Sk(xi ;θ)]

For l = 1, we recover the cross-entropy for logistic regression.
For l = 2, use that yi1 = 1−yi2 and S2(xi ;θ) = 1−S1(xi ;θ), and
obtain:

C(θ) =−2
N
∑
i=1

yi1 logS1(xi ;θ) + (1−yi1) log [1−S1(xi ;θ)]

Equivalent with cross-entropy for logistic regression (up to constant
factor).
For a two-class classification problem, it is equivalent to use one
output neuron with logistic activation or two output neurons with
softmax activation.



11/28

Softmax Regression
Shallow-learning basis of classification problems

Loss function:

C(θ) =−
N
∑
i=1

l
∑
k=1

yik logSk(xi ;θ) + (1−yik) log [1−Sk(xi ;θ)]

For l = 1, we recover the cross-entropy for logistic regression.
For l = 2, use that yi1 = 1−yi2 and S2(xi ;θ) = 1−S1(xi ;θ), and
obtain:

C(θ) =−2
N
∑
i=1

yi1 logS1(xi ;θ) + (1−yi1) log [1−S1(xi ;θ)]

Equivalent with cross-entropy for logistic regression (up to constant
factor).
For a two-class classification problem, it is equivalent to use one
output neuron with logistic activation or two output neurons with
softmax activation.



12/28

Restricted Boltzmann Machine (RBM)

h1 h2 h3 h4

v1 v2 v3 v4 v5

bjhj

aivi

wijvihjw11 w54

Energy-based model. Visible units vi ∈ {0,1}, hidden units
hj ∈ {0,1}.
Bipartite interaction graph: visible-hidden interactions, but no
hidden-hidden or visible-visible.
Standard energy function with biases ai ,bj and weights wij :

E (v,h) =−∑
i

aivi −∑
j

bjhj −∑
i ,j

wijvihj

=−a>v−b>h−v>Wh.
Continuous-variable versions and different energy functions exist.
Each hidden unit can be thought as a representative of a data
pattern or feature.
Closely related to the Hopfield memory model
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Restricted Boltzmann Machine (RBM)

h1 h2 h3 h4

v1 v2 v3 v4 v5

bjhj

aivi

wijvihjw11 w54

Energy function

E (v,h) =−a>v−b>h−v>Wh.

Defines the localations of minima (attractors in Hopfield model,
metastable states in RBM)
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Restricted Boltzmann Machine

h1 h2 h3 h4

v1 v2 v3 v4 v5

bjhj

aivi

wijvihjw11 w54

Probability of state (v,h):

p(v,h) = Z−1e−E(v,h)

Partition function Z sums over all visible and hidden states:

Z = ∑
v,h

e−E(v,h)
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Restricted Boltzmann Machine (RBM)
What can a RBM represent?

h1 h2 h3 h4

v1 v2 v3 v4 v5

bjhj

aivi

wijvihjw11 w54

Define free energy of visible units E (v) =− logp(v) and rewrite as:

E (v) =−∑
i

aivi −∑
j

∑
n

κ
(n)
j
n!

(
∑
i

wijvi

)n

where κ
(n)
j are the cumulants of the distribution of ebj hj .

Cumulants are – as moments – a way to characterize probability densities (e.g.,
as for moments, the first two cumulants are the mean and the variance).
E (v) includes all orders of interactions between the visible units.
→ Each hidden unit can encode interactions of arbitrarily high order.
→ With sufficiently many hidden units, any probabilisty distribution
of v can be encoded (compare to universal representation theorem).
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Restricted Boltzmann Machine
Training

h1 h2 h3 h4

v1 v2 v3 v4 v5

bjhj

aivi

wijvihjw11 w54

Probability of visible vector v:
p(v) = Z−1∑

h
e−E(v,h)

Derivative of the log-probability with respect to the weight is:
∂ logp(v)

∂wij
= ∑

h
p(h | v)vihj −∑

v′,h
p(v′,h)v ′i hj

= Edata [vihj ]−Emodel [vihj ]
Gradient ascent learning rules (learning rate β ):

∆wij = β (Edata [vihj ]−Emodel [vihj ])

∆ai = β (Edata [vi ]−Emodel [vi ])

∆bj = β (Edata [hj ]−Emodel [hj ])
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∆wij = β (Edata [vihj ]−Emodel [vihj ])

∆ai = β (Edata [vi ]−Emodel [vi ])

∆bj = β (Edata [hj ]−Emodel [hj ])
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Restricted Boltzmann Machine
Training

h1 h2 h3 h4

v1 v2 v3 v4 v5

bjhj

aivi

wijvihjw11 w54

Given v it is easy to sample h:

p(hj = 1 | v) =
w(hj = 1 | v)

w(hj = 0 | v) + w(hj = 1 | v)

Using w(hj = 1 | v) = exp(−bj −∑i wijvi ) and w(hj = 0 | v) = 1:

p(hj = 1 | v) =
exp(−bj −∑i wijvi )

1+ exp(−bj −∑i wijvi )

= σ(bj +∑
i

wijvi )

Given h it is easy to sample v:
p(vi = 1 | h) = σ(ai +∑

j
wijhj)
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Restricted Boltzmann Machine
Training

h1 h2 h3 h4

v1 v2 v3 v4 v5

bjhj

aivi

wijvihjw11 w54

Approximate by direct sampling of h | v:

sij := Edata [vihj ] = ∑
h

p(h | v)vihj

1 S = 0
2 For each vt in data batch (v1, ...,vB):

1 Sample h∼ p(h | vt) = σ(b+W>vt)
2 S← S+vth>

3 Edata
[
vh>

]
≈ 1

B S
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Restricted Boltzmann Machine
Training

h1 h2 h3 h4

v1 v2 v3 v4 v5

bjhj

aivi

wijvihjw11 w54

Approximate by Gibbs sampling:

qij = Emodel [vihj ] = ∑
v,h

p(v,h)vihj

1 Q = 0, Set v to initial random vector.
2 Repeat Ns times (until convergence):

1 Sample h∼ p(h | v) = σ(b+W>v)
2 Sample v∼ p(v | h) = σ(a+Wh)
3 Q←Q+vh>

3 Emodel [vihj ]≈ 1
Ns

Q
This scheme converges much slower, because the samples of h and v are
correlated!
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Restricted Boltzmann Machine
Contrastive Divergence CD-n

h1 h2 h3 h4

v1 v2 v3 v4 v5

bjhj

aivi

wijvihjw11 w54

Approximate by Constrastive divergence:

qij = Emodel [vihj ] = ∑
v,h

p(v,h)vihj

1 Q = 0, Set v to initial random vector.
2 Repeat n times (not until convergence):

1 Sample h∼ p(h | v) = σ(b+W>v)
2 Sample v∼ p(v | h) = σ(a+Wh)
3 Q←Q+vh>

3 Emodel [vihj ]≈ 1
n Q

Commonly used: CD-1. Will not provide an accurate estimate of
Emodel [vihj ] at a given time, but lead to gradients that slowly follow the
training process. Fast and works reasonable in practice.
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Restricted Boltzmann Machine

Breuleux, Bengio, Vincent: Neural Computation 2011
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Deep Boltzmann Machines
Deep Belief Network

Hidden&layer

Visible&layer

Restricted
Boltzmann&Machine

Hidden&layer

Visible&layer

Hidden&layer

Deep
Belief&Network

Hidden&layer

Hidden&layer

Visible&layer

Hidden&layer

Deep
Boltzmann&Machine

Hidden&layer

Layer>wise
pre>training

RBM1

RBM2

RBM3

Full training
(CD>n etc.)

Deep generative network, Introduction of the term “Deep learning”
(Hinton et al., 2006; Hinton and Salakhutdinov, 2006)
RBM in two top layers, deep mapping to visible nodes.
Pretraining as stack of RBMs:

First train the bottom hidden as a normal RBM
Now samples can be generated for the first hidden layer, which are
used to train the second hidden layer, etc.

Use pretrained deep RBMs to define a deep MLP (h(0) = v):
h(l) = σ(b(l) + h(l−1)>W(l))

Then train supervised. One of the first deep learning algorithms.
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Deep Boltzmann Machines
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Undirected deep generative network
Stack of RBMs.
Can be rewritten in a bipartite graph by grouping visible and even
hidden layers, and odd hidden layers:

h(1) h(3) h(5) · · ·
v h(2) h(4) · · ·

Thus, Gibbs sampling can be used.
Alternative: layer-wise pre-training, then CD-n for unsupervised
learning.
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Data generation
Reconstruction v0 of a given data point x:

Fix visible layer v = x, use MCMC sampling to find the state of the
hidden layer h which maximizes the probability distribution p(h|v)
Fixing obtained h, find reconstruction v0 of original data point which
maximizes the probability p(v0|h).

Deep Boltzmann Machine: Run forward pass to the last hidden
layer, then backward pass in reverse.
Application, e.g. image denoising. Example: randomly flip a fraction
of the black&white bits in the validation data, and use Boltzmann
machines to reconstruct (de-noise) the digit images.
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Neural Quantum States
Carleo and Troyer, Science 2017

Physical model with spin variables vi
Use RBM to represent physical spins vi and “hidden” spins hi .

E (v,h; θ) =−∑
i

aivi −∑
j

bjhj −∑
i ,j

wijvihj

=−a>v−b>h−v>Wh.

Model the QM wavefunction ψ by the marginal spin density:

ψ(v; θ) = ∑
h

e−E(v,h;θ)

The network weights are complex-valued in order to provide a
complete description of amplitude and phase of the wave-function.
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Neural Quantum States
Carleo and Troyer, Science 2017

Optimize ψ by minimizing the loss

ε(θ) =
〈ψ | H | ψ〉
〈ψ | ψ〉

=

∫
ψ∗(v; θ)(Hψ)(v; θ)〉dv∫

ψ∗(v; θ)ψ(v; θ)〉dv

Network is trained using the variational Quantum Monte Carlo
formulation.
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Project: Deep variational QMC for Molecules
Current Project (Noé group)

Electronic many-body Hamiltonian:

H = ∑
i

∇
2
i −∑

i
∑
I

ZI
|ri −RI |

+
1
2 ∑

i
∑
j

1
|ri − rj |

Find ground state (minimal) energy E and wavefunction ψ of
time-stationary Schrödinger equation:

Hψ = εψ
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Project: Deep variational QMC for Molecules
Current Project (Noé group)

Represent ψ by deep neural network and optimize by:

min
θ

ε(θ) =
〈ψ | H | ψ〉
〈ψ | ψ〉

=

∫
ψ∗(x; θ)(Hψ)(x; θ)〉dx∫

ψ∗(x; θ)ψ(x; θ)〉dx
s.t.ψ(x) antisymmetric

where antisymmetry is defined by:

ψ(x1, ...,xi , ...,xj , ...,xn) =−ψ(x1, ...,xj , ...,xi , ...,xn)

Variational Quantum Monte Carlo formulation: Sample x∼ |ψ(x)|2
and train with minibatches.
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