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Data and Linear Projections

Data set X ∈ RT×n

X =

 x1(t = 1) · · · xD(t = 1)
...

...
x1(t = T ) · · · xD(t = T )

 .
Assume that this data is empirically mean-free, i.e.

T
∑
t=1

xi (t) = 0 ∀i .

If that is not the case, we remove the mean and store it for later use.
Objective: find vectors w ∈ Rn that define linear projections

y = Xw

and are in some sense optimal (different methods arise from different
optimality criteria).
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Data and Linear Projections

Generalization: search projection matrix W ∈ Rn×m with m ≤ n
which projects the data onto a linear subspace:

Y = XW.

Y X W= .

m < n: W performs a dimension reduction (often m� n).
Generally, dimension reduction involves lossy compression, i.e.
information in the neglected dimensions is discarded.



3/19

Data and Linear Projections

Generalization: search projection matrix W ∈ Rn×m with m ≤ n
which projects the data onto a linear subspace:

Y = XW.

Y X W= .

m < n: W performs a dimension reduction (often m� n).
Generally, dimension reduction involves lossy compression, i.e.
information in the neglected dimensions is discarded.



3/19

Data and Linear Projections

Generalization: search projection matrix W ∈ Rn×m with m ≤ n
which projects the data onto a linear subspace:

Y = XW.

Y X W= .

m < n: W performs a dimension reduction (often m� n).
Generally, dimension reduction involves lossy compression, i.e.
information in the neglected dimensions is discarded.



4/19

Data and Linear Projections

Generalization: search projection matrix W ∈ Rn×m with m ≤ n
which projects the data onto a linear subspace:

Y = XW.

Find W by minimizing loss or maximizing score.
Idea: find vectors Wm = [w1, ...wm] that ...

maximize the explained variance, i.e. the variance of projected data
(y1, ...ym). For a given direction y = yi , using the fact that data is
mean-free, we have:

max∑
t

y2
t =max∑

t
‖Xw‖2

minimize the reconstruction error, i.e. the difference between the
original data X and the reconstructed data XWW>:

min‖X−XWW>‖2F
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Principal Component Analysis (PCA)
Example
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Principal Component Analysis (PCA)

First principal component: we seek the direction along which the data
has the maximum variance:

w1 = argmax
‖w‖=1

{‖Xw‖2}= argmax
‖w‖=1

{
w>X>Xw

}
Thus w1 maximizes the Rayleigh quotient

w1 = arg max
{

w>X>Xw
w>w

}
For a symmetric matrix X>X the Rayleigh quotient is maximized by the
largest eigenvalue of the matrix, which occurs when w is the
corresponding eigenvector.



6/19

Principal Component Analysis (PCA)

First principal component: we seek the direction along which the data
has the maximum variance:

w1 = argmax
‖w‖=1

{‖Xw‖2}= argmax
‖w‖=1

{
w>X>Xw

}
Thus w1 maximizes the Rayleigh quotient

w1 = arg max
{

w>X>Xw
w>w

}
For a symmetric matrix X>X the Rayleigh quotient is maximized by the
largest eigenvalue of the matrix, which occurs when w is the
corresponding eigenvector.



6/19

Principal Component Analysis (PCA)

First principal component: we seek the direction along which the data
has the maximum variance:

w1 = argmax
‖w‖=1

{‖Xw‖2}= argmax
‖w‖=1

{
w>X>Xw

}
Thus w1 maximizes the Rayleigh quotient

w1 = arg max
{

w>X>Xw
w>w

}
For a symmetric matrix X>X the Rayleigh quotient is maximized by the
largest eigenvalue of the matrix, which occurs when w is the
corresponding eigenvector.



7/19

Principal Component Analysis (PCA)

Further principal components: The kth component can be found by
subtracting the first k−1 principal components from X:

X̂k = X−
k−1
∑
s=1

Xwsw>s

and then finding the loading vector which extracts the maximum variance
from this new data matrix

w(k) = argmax
{

w>X̂>k X̂k w
w>w

}
This gives the remaining eigenvectors of X>X, with the maximum values
for the quantity in brackets given by their corresponding eigenvalues.
→ Columns of W can be computed as the eigenvectors of X>X.
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Principal Component Analysis (PCA)

Algorithm:
1 Compute the covariance matrix

C0 =
1

T −1X>X,

which is just a scaled version of X>X
2 Solve the Eigenvalue problem:

C0wi = σ
2
i wi

with normalization w>i wi = 1.
3 Select m eigenvectors with largest eigenvalues.
4 Reduce dimension from n to m with Wm = [w1, ...wm]:

Ym = XWm.
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Principal Component Analysis (PCA)
Properties

1 Principal components are orthogonal because C0 is symmetric:
W>W = I

2 Principal components are uncorrelated:
Y>Y = W>X>XW = W>WΣ2W>W =Σ2

3 PCA eigenvalues indicate variances along principal components:
σ

2
i = y>i yi

A method to determine m is the cumulative explained variance:

Vm =

(
m
∑
i=1

σ
2
i

)
/

(
n
∑
i=1

σ
2
i

)
4 Transformation into all principal components, Y = XW is loss-less:

X = XWW>

5 The projection onto m < n principal components, Ym = XWm is
lossy. It minimizes the squared reconstruction error:

‖XWW>−XWmW>
m‖22 = ‖X−Xm‖22
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PCA
Example
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PCA
Eigenfaces

Run PCA on 2429 19x19 grayscale images (CBCL data)
Compresses the data: can get good reconstructions with only 3
components

PCA for pre-processing: can apply classifier to latent representation
PCA w/ 3 components obtains 79% accuracy on face/non-face
discrimination in test data vs. 76.8% for m.o.G with 84 states
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PCA
Eigenfaces
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Autoencoder
Properties

Use the same loss function as in PCA:

C(X;θ) = ‖X−D(E (X))‖2F =
T
∑
i=1
‖xi −D(E (xi ))‖2
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Autoencoder versus PCA

Use linear encoder E ∈ Rn×m and decoder D ∈ Rm×n:

E (x) = Ex
D(y) = Dy

The Autoencoder optimization problem becomes:

min
D,E

N
∑
i=1
‖xi −DExi‖2F

For choice E = Wm and D = W>
m the linear Autoencoder is

equivalent to PCA, which provides the optimal solution.
For nonlinear E and D, the Autoencoder performs a “nonlinear PCA”



14/19

Autoencoder versus PCA

Use linear encoder E ∈ Rn×m and decoder D ∈ Rm×n:

E (x) = Ex
D(y) = Dy

The Autoencoder optimization problem becomes:

min
D,E

N
∑
i=1
‖xi −DExi‖2F

For choice E = Wm and D = W>
m the linear Autoencoder is

equivalent to PCA, which provides the optimal solution.
For nonlinear E and D, the Autoencoder performs a “nonlinear PCA”



14/19

Autoencoder versus PCA

Use linear encoder E ∈ Rn×m and decoder D ∈ Rm×n:

E (x) = Ex
D(y) = Dy

The Autoencoder optimization problem becomes:

min
D,E

N
∑
i=1
‖xi −DExi‖2F

For choice E = Wm and D = W>
m the linear Autoencoder is

equivalent to PCA, which provides the optimal solution.
For nonlinear E and D, the Autoencoder performs a “nonlinear PCA”



14/19

Autoencoder versus PCA

Use linear encoder E ∈ Rn×m and decoder D ∈ Rm×n:

E (x) = Ex
D(y) = Dy

The Autoencoder optimization problem becomes:

min
D,E

N
∑
i=1
‖xi −DExi‖2F

For choice E = Wm and D = W>
m the linear Autoencoder is

equivalent to PCA, which provides the optimal solution.
For nonlinear E and D, the Autoencoder performs a “nonlinear PCA”



15/19

Autoencoder versus PCA
Method Comparison
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Neural Autoencoder architectures
Dense Neural Network
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Neural Autoencoder Architectures
Convolutional Neural Network

Convolution of x ∈ Rn with w ∈ Rk , using k ≤ n and “valid
padding”, can be written as linear operation

y = Wx (1)

with W ∈ Rn−k+1×n being a Toeplitz matrix:

W =

 w1 · · · wk
. . . . . .

w1 · · · wk


Convolutions make the dimension of the data array smaller (valid
padding) or leave it equal (zero padding). They cannot increase the
dimension.
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Neural Autoencoder Architectures
Convolutional Neural Network

Transposed convolutions: To increase the dimension, we consider
x ∈ Rp, y ∈ Rq, p ≤ q and convolve using

y = W>x

where W> ∈ Rq×p increases the size of the input array and has
learnable parameters:

W> =


w1
...

. . .
wk w1

. . .
...

wk


In practice, one does not apply Toeplitz matrices to implement
convolutions because they consist mostly of zeros. Instead, we use a
trick to employ the implementation of standard convolution layers to
compute transposed convolutions.
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Reminder: Forward and Backward Pass

Symbols:
W: Weight matrix
xl : neural output activations at layer l ,
σ(·): nonlinear activation function,
zl : neural activations before nonlinearity, z l

i = ∑k w l
ikx l−1

k +bl
i

Forward pass (assuming no bias, bl = 0):

zl+1 = Wl+1xl

xl+1 = σ

(
Wl+1xl

)
.

Backward pass (using the definition of error el
i = ∂C/∂z l

i ):

el
i= σ

′(z l
i )∑

j
el+1

j w l+1
ji

el= σ
′(zl)(Wl+1)>el+1

→ Transposed convolution can be implemented by exchanging
forward and backward pass.
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