Reinforcement learning

F. Noé!

Deep Learning Classes, FU Berlin 2018

1/24

Reinforcement Learning

Lee Sedol

Y g
.

2/24

Reinforcement Learning: Basic Terms
St R
Ty

ay
< WESY g .
D Enwronment}f
IS AN

@ Agent interacts with Environment, e.g. a chess player interacts
with the game board (states, rules) and the opponent.

Basic model:

o State s; € .: The current state of the environment visible to the
agent, e.g. positions of all figures on the board.

@ Action a; € &/: The current action taken by the agent, e.g. move
knight from B1 to C3.

@ Reward r; € R: Immediate reward for the step s; 2 Sti1, €.8.

improvement of the board situation. 3/24
Aim: Take actions a; so as to maximize long-term reward.

Markov Decision Process (MDP)

ay

D5, a)
/ r(s,a)
PoStIN

Known Inputs:

@ Finite set of discrete states s; and actions a;.

e Initial probabilities: p(sp). Transition dynamics P,,(sty1 | St)-

o Reward r; = R,,(st,5:+1) is paid after applying a; in state s,
leading to a transition to s;;1.

Optimization problem: max; J; with:

e Policy vector 7(a|s): probabilities of choosing actions a ~ m(a]| s).

@ Long-time reward using finite time horizon or infinite time horizon
with discount factor 7:

oo T
Iy = E,uo,P,n' [Z Vtrt] J;{ = EHO,P,H lz rt] 4/24

t=0 t=0

Markov Decision Process (MDP)

ay

D5, a)
4 /T(Saa)
PoStIN

Solution with dynamic programming: Optimal solution is a policy that
assigns a best action to every state:

s — a(s)

Solution is found by iterating two equations that update the best action
3(s) and the estimated value of a state s, V(s) (Bellmann 1957):

3(s) « argmax {Z Pa(s" | s) (Ra(s,s") +}/V(s'))}

V(s) = X Po(s' | 9) (Rago (:5) + 7V(5) »

Reinforcement learning
Tt

< WESY .
D Enwronment}f
v St+1\

o Reinforcement learning: Probabilities or rewards are unknown.
e Value-based RL / Q learning: Define state-action quality function:

Q(s,a) = Z Pa(s'| s)(Ra(s,s') +7V(s'))

and then derives a policy selection probability vector m(a|s), e.g.:

o For competitive performance: 7% = argmax, Q(s,a)
Q)
):a,eQ(s.a’)
@ Policy-search RL: Parametric policy n(a|s;6). Optimize 6.

@ Many modern RL techniques contain aspects of both, e.g. AlphaGo. 6/24

o For exploring the search tree: m(a|s) =

Reinforcement learning
Tt

ESY .
Enwronment}f
St+1\

o Probabilities P or rewards r are unknown — How do we compute:

A A

=)

) Ytrtl Q(s,a) = Z/Pa(s’s/)(Ra(svs/)+7V(S/))

t=0

Jr =Euopx

@ Monte-Carlo search: Sample J7 or Q by generating many
transition pairs s; 2 Sttt

e Playouts: Start in an initial random state and simulate moves until
T steps have been made or a terminal state has been reached.

o Difficulties: Playouts are expensive and search tree expands with
branching factor n (Number of actions) in every step. — How do we

sample relevant playouts likely to lead to winning strategies? /24

Monte Carlo Tree Search (MCTS)

Purpose: Faster/Better Playouts

Selection Expansibn Simulation Backpropagation

01

Number of games won / number of games played by black or white player.

@ Aim: analyse most promising moves of a game by expanding the
search tree based on random sampling of the search space.

e Playouts: in each playout, the game is played to the end or to the
stopping node by selecting moves at random.

o Weight nodes in game tree with final game result of each playout
— better nodes are more likely to be chosen in future playouts. 8/24
1From https://en.wikipedia.org/wiki/Monte_ Carlo_tree_search

Monte Carlo Tree Search (MCTS)

Purpose: To avoid overfitting as a function of training time

Sele ction Expansion Sirmulation Backpropagation

@: @

01

Number of games won / number of games played by black or white player.

Steps of each MCTS round:
@ Selection: start from root R and select successive child nodes down
to a leaf node L.
@ Expansion: unless L ends the game with a win/loss for either
player, create child nodes and choose node C from one of them.
© Simulation: play a random playout from node C.
@ Backpropagation: use the result of the playout to update
information in the nodes on the path from C to R. 9/24
has the most S|mu|at|on made.

= NP A ST R T AT N T N D S D

Deep Reinforcement Learning
Tt

ag
i: Tl .
D Enwronment}f
St N

@ Policy network [1: maps state to prior policy

s — m=T(s)
@ Value network V: maps state to value

s—=v=V(s)

o lterate:
@ Generate playouts, i.e. apply N1 and MCTS samples until game is
won or a number of actions have been taken. 10/24

@ Given the observed state-action sequences s; 2 St+1, train [T and V.

Alpha Go and Sons

AlphaGo Zero

Starting from seratch

$0: AlphaGo Lee Sedol
DLz 7 g
N)

%

IS

11/24

o
O

12/24

Alpha Go and Sons

13/24

Alpha Go Zero (Silver et al., Nature 2017)

Self-play reinforcement learning

o Self Play: Create a training set
e Best current player plays 25,000 games against itself
o Each move is made based on MCTS that is informed by a trainable
policy /value network.
o At each move, store the MCTS search probabilities.
o For each game, store the winner (+1,—1).
@ Train Network: Optimize I1, V' network weights
o Sample mini-batch of 2,048 positions from the last 500,000 games.
o Retrain I network: minimize cross-entropy with © from MCTS
o Retrain V network: minimize mean square error to actual winners.
o Evaluate Network: Test if we have a new champion
o Play 400 games competitively between latest network and current
best network.
o Both Players use MCTS and their respective networks to select
moves
o Latest network is declared best player if it wins 55% of the games.

14/24

Alpha Go Zero (Silver et al., Nature 2017)

Self-play reinforcement learning

S1

[e (] s [5] 000 mp §53

ARRRAEE 2 ¥

@ Program plays games against itself — state sequences: si,...,sT.
@ In each position s;, execute Monte-Carlo tree search (MCTS) using
the current policy-value network I,V and compute search
probabilities 7;.
@ Select move a; ~ ;.
. : . . 15/24
@ Store game winner z defined by terminal position st.

Alpha Go Zero (Silver et al., Nature 2017)

MCTS

The current gome stote (s)

-) action fa)
The acton that

maximises (+ U

The action that
maximises Q + U

The game state

A possible next =

Each potentidl action from a game
state stores four numbers

N The number of fimes action a has
been taken from state s

W The total value of the next state

Q The mean value of the next state

P The prior probabifity of selecting
action o

Gome state fedinfo +
neurd network

16/24

Alpha Go Zero
MCTS

N Number of times selected, P prior selection probability, W/Q total/mean next value

a. S:Iect b. Expand and evaluate c. Bajckup d. Play
Hoev . H g £3
B 1 Be o f3? $ asi iy
Q + U foax ¢ J/- l
B eo=s(R) 82 £
pgvs’/ \.1)’ VB R i

Starting at current game state so =s, i =0, run 1,600 times:

o While s; not leaf: s; = s;1 with action a that maximizes
Q+U(P,N)
U dominates early in simulation (exploration), Q dominates later (exploitation)

@ Leaf node s;: Predict value v = V/(s;) and policy M(s;). Set priors of
next nodes:

P(si,a) = Na(s;)
@ Backup edges: For each edge (s;,a) traversed

N(siva)+:1 W(S,‘,a)+:v Q= W/N 17/24

Alpha Go Zero (Silver et al., Nature 2017)

Move selection

N Number of times selected, P prior selection probability, W/Q total/mean next value

a. S:Iect b. Expand and evaluate c. Ba::kup d. Play
i fovo ¥ E}H\Q H
e 7 B BT ¢ re? iy
Q+Ufour 9 &
[@ =5 (7)) 2 $
ngy \1)’ U#) "

@ After 1,600 simulations, choose move:

o During self play (exploration): 7 ~ N/%, temperature parameter 7
o During competitive play: max /.

@ Subtree with chosen move is kept, remaining tree is discarded.
18/24

Alpha Go Zero (Silver et al., Nature 2017)

Neural network architecture

Y0 resdusl layers

16 becksree e .
o e m T
Rechfer non-lneany
Cusvent pstin of 1919 x17 stock [T 1 N ¥-Em
blck'sstnes
1o 1.0 0 ‘Batch normalsation
0 01 EEETE - .
o
ne periads
Current postion of 256 convolional
i sfones fiters (363)

and fon e s

7 tme periods ‘ B

Conv Layer:

AL Hack fo lay

A0 F wiite o ploy
Toput

Game state:

Residual Layer:

g 2
3 5

. H H

i i | B

19/24

N -
HE-N EN
HE-N En
HE-N EN

Alpha Go Zero (Silver et al., Nature 2017)

Neural network architecture

40 resdual layers

game value for current player

forh non-lnecrity

Fuly camected loyer

HE b-Em
Rectifier non-lnearity
‘ EE ©-Em 1919 +1(forposs)

ove g probabities
Hdenlayen sze 256 e

Fuly comected layer
Fully comected layer.

EE -EE
Em 5-Em Rectifier non-lnearity
Rectifier non-inearity
N -EE ! HE H-EE
Befchnomdisation Batch normalsation
I EEEEE- . I EEENE - .
convolutional fiter 2 convolutional fiters
() . (x1) .
I h T h N

o~ ! 20/24

Value head Policy head

Alpha Go Zero (Silver et al., Nature 2017)

Neural network training in AlphaGo Zero

Elo rating Ea, Eg for zero sum games (A wins — B loses):
1

1+ 107(EA7EB)/400

Es— Eg = —400logyo(1/p(Awins) —1)

p(Awins) =

p(Awins) | 0.01 | 01 | 05 | 0.9 | 0.99

En—Eg | -798 | -381 | 0 | 381 | 798
5000 g7 , 035
8 £
8
4000 3 60 8 i
2 g
3000 = S oslfh
5 50 5 ||l
2000 2 S
&= 2 5
1000 B 40] W
< a / 3025 1
w o § 30 / K]
5 g
1000 8 / §
32 [g 02
-2000 8 | 5
g / :
] — Reinforcement Learning g 10 / £
~3000 1 f — Supervised Learning 2 / — Reinforcement Learning 3 — Reinforcement Learning
000 «- AlphaGo Lee 3 ol — Supervised Learning g 0.15 | = Supervised Learning
o 10 20 30 40 50 60 70 a o 10 20 30 40 50 60 70 g 0 10 20 0 40 50 60 70
Training time (hours) Training time (hours) Training time (hours)
Left: Performance of self-play reinforcement learning. 21/24
Middle: Prediction accuracy on human professional moves.

Right: Mean-squared error (MSE) on human professional game outcomes.

Alpha Go Zero (Silver et al., Nature 2017)

Neural network training in AlphaGo Zero

5000
5000

4000 r//——/‘*"’— 4000

3000
2000 :
1000

0

1000 = AlphaGo Zero 40 blocks 1000
« =« AlphaGo Master
2000 « « « AlphaGo Lee
‘ 0 |

Elo Rating
@
8
8

Elo Rating
8
8

d é 10 15 2‘0 25 30 35 40 2 R R C, A
Y, Yy, Ty, T, T, % % %
%, Q6 %G, % T ®
Days Y, Oa P4, O Oa
% S Ry G %

Performance of AlphaGo Zero.
a Learning curve for AlphaGo Zero using larger 40 block residual network over 40 days.

b Final performance of AlphaGo Zero. AlphaGo Zero was trained for 40 days using a

40 residual block neural network. The plot shows the results of a tournament between:
AlphaGo Zero, AlphaGo Master (defeated top human professionals 60-0 in online

games), AlphaGo Lee (defeated Lee Sedol), AlphaGo Fan (defeated Fan Hui), as well 22/24

as previous Go programs Crazy Stone, Pachi and GnuGo.

Alpha Zero (Silver et al., 2017)

Main changes to Alpha Go Zero:

@ Maximize expected number of wins instead of number of wins

@ Keeps only one network (no “champion” who needs to win 55% of

the games)

@ Plays three games (Chess, Shogi, Go) with the same
hyperparameters.

5000 Chess Shogi

4000 _

3000

2000 —— Alphazero —— Alphazero
1000 —— Stockfish — Elmo

0
0 100 200 300 400 500 600 700
Thousands of Steps

Thousands of Steps

AlphaZero (34 hours) | 4 TPUs, single machinel®] | 4,000 (est.) | 60:40 against a 3-day AlphaGo Zero

Versions ¢ Playing hardware’®? ¢
AlphaGo Fan 176 GPUs,? distributed
AlphaGo Lee 48 TPUs 2l distributed
Game White Black Win AlphaGo Master 4TPUs, single machine
Chess AlphaZero Stockfish 25
Stockfish Alphazero | 3
Alphazero Elmo 43 @
Shogi Ew Alphazers | 41 AlphaGo Zero (40 days) ' 4 TPUs,!? single machine
AlphaZero AGO3-day | 31
AGO3-day AlphaZero | 29

0 100 200 300 400 500 600 700 O 100 200 300 400 500 600 700
Thousands of Steps

Elorating ¢

60:0 against professional players;

89:11 against AlphaGo Master

Alpha Zero (Silver et al., 2017)

A10: English Opening

2%
|
19% ‘_‘
/n
\
) A MY L r
-V W W
LY. Vi
Wy WV
% + + + .
oo 200 400 600 800

1...e5 g3 d5 cxd5 @f6 £g2 HxdS D3

DO06: Queens Gambit

2%

12% A
/ \/{\J‘A
o Nt e
WA
% oy + + +
000 200 400 600 800

2...c6 Dc3 D6 Df3 a6 g3 c4 ad

A46: Queens Pawn Game

25%

10%

12%

6%
e e Tom 2 w0 oo e
w 24/26/0, b 3/47/0 2..d5 ¢4 e6 D3 ke7 £f40-0e3

: Queens Pawn Game
25%

19%

. 0
N AN AT

bl TP VIW Y

000 200 400 600 800

3.3 dS &3 £b4 £p5 h6 Wad Hic6

E61: Kings Indian Defence

" 000 2:00 400 6:00 &:00

w 16/34/0, b 0/48/2 3...d5 cxd5 &xd5 e4 &ixc3 bxc3 fg7 se3

Videos of representative games on YouTube

‘C00: French Defence

25%

LAV ang
.l WY WA,
000 200 400 00 800

3.8c3 D16 e5 DT f4 c5 Df3 feT

24/24

