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Finding optimal model parameters
Minimization of cost functions

Symbols
Meaning Symbol Shape
Feature vector and Matrix x Rn

Data set matrix X RN×n

Label matrix y Rl

Label matrix Y RN×l

Parameters θ Rd

Loss / Cost function C(X; θ) or C(X, Y; θ) R

Cost function C quantifies how well a given model with parameters θ

explains the observations X.

Model fitting

θ̂ = argminθ C(X; θ)

Minimimizing the cost C is equivalent to maximizing the score −C .
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Gradient descent

Iteratively adjust the parameters in the direction of

−∇θC(X; θ)

Parameters move towards a local minimum of the cost function.
Difficulties:

Cost functions are usually non-convex, and often rugged
→ optimization may get stuck in local minima
Cost functions often involve terms for every data point
→ cost function is expensive to evaluate
Exact cost function often not available, must be estimated from data.
→ cost functions noisy, not all minima are meaningful.

Further reading:
Y. LeCun, L. Bottou, G. B. Orr, K.-R. Müller: Efficient backprop, in
Neural networks: Tricks of the trade (Springer) pp. 9–50 (1998).
L. Bottou: Stochastic gradient descent tricks, in Neural networks:
Tricks of the trade (Springer), pp. 421–436 (2012).
S. Ruder: An overview of gradient descent optimization algorithms,
arXiv:1609.04747 (2016).
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Gradient descent
Illustration

1

Note that ∇θC(X; θ) = 0 is fulfilled at any critical point. In high
dimensions, most critical points are saddle points.

1
1From Goodfellow, Bengio and Courville: Deep Learning, MIT Press 2016
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Gradient descent

Abbreviation (data X is implicit):

C(θ)≡ C(X; θ)

Simple gradient descent algorithm
1 Initialize θ 0
2 For t = 0, ...,T −1 or until converged:

1 Compute gradient g(θ t) = ∇θC(θ t)
2 Update parameters: θ t+1 = θ t −ηtg(θ t)

ηt is the learning rate that controls how big a step we should take in
the search direction −g(θ t) at time t.
For small ηt , this method will converge to a local minimum of
C(θ t), but involves a large computational cost.
For large ηt , the algorithm can overshoot and even diverge.
In practice, one decreases ηt over time or chooses it adaptively.



5/21

Gradient descent

Abbreviation (data X is implicit):

C(θ)≡ C(X; θ)

Simple gradient descent algorithm
1 Initialize θ 0
2 For t = 0, ...,T −1 or until converged:

1 Compute gradient g(θ t) = ∇θC(θ t)
2 Update parameters: θ t+1 = θ t −ηtg(θ t)

ηt is the learning rate that controls how big a step we should take in
the search direction −g(θ t) at time t.
For small ηt , this method will converge to a local minimum of
C(θ t), but involves a large computational cost.
For large ηt , the algorithm can overshoot and even diverge.
In practice, one decreases ηt over time or chooses it adaptively.



5/21

Gradient descent

Abbreviation (data X is implicit):

C(θ)≡ C(X; θ)

Simple gradient descent algorithm
1 Initialize θ 0
2 For t = 0, ...,T −1 or until converged:

1 Compute gradient g(θ t) = ∇θC(θ t)
2 Update parameters: θ t+1 = θ t −ηtg(θ t)

ηt is the learning rate that controls how big a step we should take in
the search direction −g(θ t) at time t.
For small ηt , this method will converge to a local minimum of
C(θ t), but involves a large computational cost.
For large ηt , the algorithm can overshoot and even diverge.
In practice, one decreases ηt over time or chooses it adaptively.



5/21

Gradient descent

Abbreviation (data X is implicit):

C(θ)≡ C(X; θ)

Simple gradient descent algorithm
1 Initialize θ 0
2 For t = 0, ...,T −1 or until converged:

1 Compute gradient g(θ t) = ∇θC(θ t)
2 Update parameters: θ t+1 = θ t −ηtg(θ t)

ηt is the learning rate that controls how big a step we should take in
the search direction −g(θ t) at time t.
For small ηt , this method will converge to a local minimum of
C(θ t), but involves a large computational cost.
For large ηt , the algorithm can overshoot and even diverge.
In practice, one decreases ηt over time or chooses it adaptively.



5/21

Gradient descent

Abbreviation (data X is implicit):

C(θ)≡ C(X; θ)

Simple gradient descent algorithm
1 Initialize θ 0
2 For t = 0, ...,T −1 or until converged:

1 Compute gradient g(θ t) = ∇θC(θ t)
2 Update parameters: θ t+1 = θ t −ηtg(θ t)

ηt is the learning rate that controls how big a step we should take in
the search direction −g(θ t) at time t.
For small ηt , this method will converge to a local minimum of
C(θ t), but involves a large computational cost.
For large ηt , the algorithm can overshoot and even diverge.
In practice, one decreases ηt over time or chooses it adaptively.



5/21

Gradient descent

Abbreviation (data X is implicit):

C(θ)≡ C(X; θ)

Simple gradient descent algorithm
1 Initialize θ 0
2 For t = 0, ...,T −1 or until converged:

1 Compute gradient g(θ t) = ∇θC(θ t)
2 Update parameters: θ t+1 = θ t −ηtg(θ t)

ηt is the learning rate that controls how big a step we should take in
the search direction −g(θ t) at time t.
For small ηt , this method will converge to a local minimum of
C(θ t), but involves a large computational cost.
For large ηt , the algorithm can overshoot and even diverge.
In practice, one decreases ηt over time or chooses it adaptively.



6/21

Gradient descent
Choice of learning rate ηt

1

Convergence as a function of learning rate ηt in a quadratic potential.

1From Goodfellow, Bengio and Courville: Deep Learning, MIT Press 2016
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Gradient descent
Lessons from Newton (2nd order) for gradient descent (1st order)

Consider second-order Taylor expansion:

C(θ + v)≈ C(θ) + ∇θC(θ)v +
1
2v>

(
∇θ ∇

>
θ

)
(θ)v

= C(θ) + g(θ)v +
1
2v>H(θ)v

with gradient g = ∇θC and Hessian matrix of second derivatives
H = ∇θ ∇>

θ
.

Differentiating this equation and seeking the optimum via
∇θC(θ + vopt) = 0 yields:

g(θ) + H(θ)vopt = 0

Rearranging yields the Newton update rules:

vt =−H−1(θ t)g(θ t)

θ t+τ = θ t + vt

Often the Hessian is poorly conditioned → replace inverse by regularized
version, e.g. [H(θ t) + εI]−1 with small parameter ε.
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Gradient descent
Lessons from Newton (2nd order) for gradient descent (1st order)

Neural networks often use d > 106 parameters → Newtons method
unpractical, because calculating (d2) and inverting (d3) the Hessian
is too expensive.
But: we can gain insights from the Newton update for gradient
descent.
Consider the one-dimensional quadratic function

C(θ) =
1
2kθ

2 g(θ) = kθ H(θ) = k

Inserting into the Newton update leads to:

θ t+τ = θ t −H−1(θ t)g(θ t)

= θ t −k−1g(θ t)

Compare to gradient descent update θ t+1 = θ t −ηtg(θ t) →
learning rate ηt = k−1. The stiffer the potential (large k), the lower
the learning rate must be chosen.
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Gradient descent
Lessons from Newton (2nd order) for gradient descent (1st order)

For multidimensional case, the optimal Newton learning rate is

η = σ
−1
max

where σmax is the maximal singular value of the Hessian
Singular value decomposition:

H = UΣV>

with U and V are unitary matrices of singular vectors and
Σ = diag(σ1, ...,σd ) are the singular values.
Time to converge close to the minimum (ε-ball around the minimum
in a quadradic expansion) is proportional to the condition number:

κ =
σmax

σmin
,

i.e. convergence is slow for anisotropic minima (with steep and
shallow directions). LeCun et al., 1998.
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Gradient descent
Limitations and Improvements of gradient descent

GD finds only local minima of C(θ) → Optimization may get stuck.
→ Idea: Use stochastic perturbations.
GD is sensitive to initial conditions → Minimum depends on θ0.
→ Idea: Try different θ0

Many cost functions are of the form

C(X, θ) =
N
∑
i=1

ci (xi , θ)

with data samples xi . Computing the gradients is expensive, O(N).
→ Idea: Compute sample expectation of the gradient.
GD is very sensitive to learning rate ηt . Small ηt involve high
computational cost, large ηt may result in divergence.
→ Idea: Choose ηt adaptively.
GD has the same learning rate in all directions. → Poor convergence
with κ = σmax/σmin, close to the optimum.
GD can take exponential time to escape saddle points. Boost
methods exist (not treated here)
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Stochastic Gradient Descent
Speeding up gradient descent (Bottou, 2012; Williams and Hinton, 1986)

Many cost functions and their gradients are of the form

C(X, θ) =
1
N

N
∑
i=1

ci (xi , θ) ∇θC(X, θ) =
1
N

N
∑
i=1

∇θ ci (xi , θ)

with data samples xi . Computing such gradients is expensive, involving
O(N) operations, where N may be millions.
Idea: rewrite gradient as an expectation Ex:

∇θC(X, θ) =
1
N

N
∑
i=1

∇θ ci (xi , θ)≈ Ex [∇θ c(x, θ)]

Subdivide the N-sample average into M averages over n samples each.
Call index sets Bm:

∇θC(X, θ) =
1
M

M
∑

m=1

1
n ∑

i∈Bm

∇θ ci (xi , θ)≈ Ex [∇θ c(x, θ)]
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Stochastic Gradient Descent
Speeding up gradient descent

Ignore constant M (we can incorporate it into learning rate ηt). Change
gradient descent algorithm as follows:

Stochastic gradient descent
1 Initialize θ 0
2 For epoch e = 1, ...,E or until converged:

1 For minibatch m = 1, ...,M:
1 Compute minibatch gradient gm(θ) = 1

n ∑i∈Bm ∇θ ci (xi , θ)
2 Update parameters: θ t+1 = θ t −ηtgm(θ t )

SGD replaces the gradient over the full data by an approximation to
the gradient computed using a minibatch.
Introduces stochasticity and decreases probability of getting stuck in
local minima (Bishop, 1995a; Keskar et al., 2016).
Calculation in each step is much cheaper (M� N evaluations).
In practice, also much less total evaluations are needed in total to
achieve similar loss values.



12/21

Stochastic Gradient Descent
Speeding up gradient descent

Ignore constant M (we can incorporate it into learning rate ηt). Change
gradient descent algorithm as follows:

Stochastic gradient descent
1 Initialize θ 0
2 For epoch e = 1, ...,E or until converged:

1 For minibatch m = 1, ...,M:
1 Compute minibatch gradient gm(θ) = 1

n ∑i∈Bm ∇θ ci (xi , θ)
2 Update parameters: θ t+1 = θ t −ηtgm(θ t )

SGD replaces the gradient over the full data by an approximation to
the gradient computed using a minibatch.
Introduces stochasticity and decreases probability of getting stuck in
local minima (Bishop, 1995a; Keskar et al., 2016).
Calculation in each step is much cheaper (M� N evaluations).
In practice, also much less total evaluations are needed in total to
achieve similar loss values.



12/21

Stochastic Gradient Descent
Speeding up gradient descent

Ignore constant M (we can incorporate it into learning rate ηt). Change
gradient descent algorithm as follows:

Stochastic gradient descent
1 Initialize θ 0
2 For epoch e = 1, ...,E or until converged:

1 For minibatch m = 1, ...,M:
1 Compute minibatch gradient gm(θ) = 1

n ∑i∈Bm ∇θ ci (xi , θ)
2 Update parameters: θ t+1 = θ t −ηtgm(θ t )

SGD replaces the gradient over the full data by an approximation to
the gradient computed using a minibatch.
Introduces stochasticity and decreases probability of getting stuck in
local minima (Bishop, 1995a; Keskar et al., 2016).
Calculation in each step is much cheaper (M� N evaluations).
In practice, also much less total evaluations are needed in total to
achieve similar loss values.



12/21

Stochastic Gradient Descent
Speeding up gradient descent

Ignore constant M (we can incorporate it into learning rate ηt). Change
gradient descent algorithm as follows:

Stochastic gradient descent
1 Initialize θ 0
2 For epoch e = 1, ...,E or until converged:

1 For minibatch m = 1, ...,M:
1 Compute minibatch gradient gm(θ) = 1

n ∑i∈Bm ∇θ ci (xi , θ)
2 Update parameters: θ t+1 = θ t −ηtgm(θ t )

SGD replaces the gradient over the full data by an approximation to
the gradient computed using a minibatch.
Introduces stochasticity and decreases probability of getting stuck in
local minima (Bishop, 1995a; Keskar et al., 2016).
Calculation in each step is much cheaper (M� N evaluations).
In practice, also much less total evaluations are needed in total to
achieve similar loss values.



13/21

Stochastic Gradient Descent
Adding Momentum

“Momentum” term: Memory of the direction we are moving.

SGD update with Momentum
Using the momentum parameter 0≤ γ ≤ 1, we can implement SGD as:

vt = γvt−1 + ηt∇θC(θ t)

θ t+1 = θ t −vt

or, equivalently, written with parameter updates ∆θ t = θ t −θ t−1:

∆θ t+1 = γ∆θ t −ηtg(θ t)

vt is running average of recent gradients
(1− γ)−1 is characteristic time scale of the averaging memory.
Momentum helps SGD to gain speed in directions with persistent
gradients and suppresses oscillations in high curvature directions.
Useful when C(θ t) has flat and steep directions.
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“Momentum” term: Memory of the direction we are moving.

SGD update with Momentum
Using the momentum parameter 0≤ γ ≤ 1, we can implement SGD as:

vt = γvt−1 + ηt∇θC(θ t)

θ t+1 = θ t −vt
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vt is running average of recent gradients
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Stochastic Gradient Descent
Physical interpretation

SGD with momentum is equivalent to numerically solving a dynamical
equation of a particle with mass m and position θ moving in a viscous
medium under the dimensionless potential C(θ):

md2θ

dt2︸ ︷︷ ︸
total force

= −∇θC(θ)︸ ︷︷ ︸
force from potential

−µ
dθ

dt︸ ︷︷ ︸
drag force

. (1)

Derivation: Finite differences dθ

dt =
θ t+∆t−θ t

∆t , d2θ

dt2 =
θ t+∆t−2θ t +θ t−∆t

(∆t)2 .
Define:

γ =
m

m+ µ∆t , η =
(∆t)2

m+ µ∆t
In the limit of small learning rate, the momentum memory time scales as

(1− γ)−1 ≈m/µ∆t.

Langevin form: When approximating the gradient ∇θC(θ) with
minibatches, it can be written as a deterministic part (gradient in the
limit M→ N), plus a noise term depending on minibatch size. Then, Eq.
(1) is a Langevin equation.
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Stochastic Gradient Descent
Methods using the second moment of the gradient

Desirable to adapt the learning rate by taking large steps in shallow,
flat directions
Second-order methods do this by computing the Hessian matrix, but
this is computationally expensive.
Alternative: methods that track not only the gradient but also its
second moment.
Examples:

AdaGrad (Duchi et al., 2011)
AdaDelta (Zeiler, 2012)
RMS-Prop (Tieleman and Hinton, 2012)
ADAM (Kingma and Ba, 2014).
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RMS prop
Methods using the second moment of the gradient

Idea: keep track of the second moment denoted by st = E
[
g2

t
]

RMS prop update

gt = ∇θC(θ t)

st = βst−1 + (1−β )g2
t

θ t+1 = θ t −ηt
gt√st + ε

where gt/(
√st + ε) and g2

t are element-wise operations.

β controls the averaging time of second moment. Typically β = 0.9.
ηt is the learning rate, typically ηt = 10−3

ε is a small regularization constant, typically ε = 10−8.
Learning rate is reduced/increased in directions when gradient
fluctuates much/little.
Speeds up convergence by larger learning rates in flat directions.
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ADAM
Methods using the second moment of the gradient

Idea: running average of 1st and 2nd moment of gradient, mt = E [gt ]
and st = E

[
g2

t
]
and correct for bias of using running averages.

ADAM update
Gradient and moment update:

gt = ∇θC(θ t)

mt = β1mt−1 + (1−β1)gt

st = β2st−1 + (1−β2)g2
t

Bias correction for moments:

m̂t =
mt

1−β t
1

ŝt =
st

1−β t
2

Parameter update:
θ t+1 = θ t −ηt

m̂t√
ŝt + ε

where m̂t/(
√

ŝt + ε) and g2
t are element-wise operations.
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ADAM
Methods using the second moment of the gradient

β1 ∼ 0.9 and β2 ∼ 0.99 set the memory lifetime of the first and
second moment.
ηt and ε are equivalent to the RMSprop parameters.
Learning rate is reduced in directions where the norm of the gradient
is consistently large.
Greatly speeds up the convergence by allowing us to use a larger
learning rate for flat directions.
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ADAM
Methods using the second moment of the gradient

Interpretation: Consider the update of a single parameter θt and rewrite
the second moment in terms of the variance:

σ
2
t = ŝt − m̂2

t .

The update rule is then:

θt+1 = θt −ηt
m̂t√

σ2
t + m̂2

t + ε

Consider limiting cases:
1 Gradient estimates are consistent with a small variance:

1 Update rule tends to ∆θt+1→−ηt .
2 Cuts off large persistent gradients at 1 and limit the maximum step

size in steep directions.
2 Gradient fluctuates strongly between gradient descent steps:

1 σ2� m̂2
t and update becomes ∆θt+1→−ηt

m̂t
σt

2 Makes learning rate equal to signal-to-noise ratio.
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t = ŝt − m̂2

t .

The update rule is then:

θt+1 = θt −ηt
m̂t√

σ2
t + m̂2

t + ε

Consider limiting cases:
1 Gradient estimates are consistent with a small variance:

1 Update rule tends to ∆θt+1→−ηt .
2 Cuts off large persistent gradients at 1 and limit the maximum step

size in steep directions.
2 Gradient fluctuates strongly between gradient descent steps:

1 σ2� m̂2
t and update becomes ∆θt+1→−ηt

m̂t
σt

2 Makes learning rate equal to signal-to-noise ratio.



19/21

ADAM
Methods using the second moment of the gradient

Interpretation: Consider the update of a single parameter θt and rewrite
the second moment in terms of the variance:

σ
2
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Comparison

1

Comparison of gradient descent methods (104 steps) for Beale’s function.
Gradient descent (GD; black line), η = 10−6

Gradient descent with momentum (GDM; magenta line), η = 10−6

NAG (cyan-dashed line), η = 10−6

RMSprop (blue dash-dot line), η = 10−3, β = 0.9, ε = 10−8

ADAM (red line), η = 10−3, β1 = 0.9, β2 = 0.99, ε = 10−8.

1From Mehta et al, arXiv:1803.08823v1
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Best practices

1 Randomize (shuffle) the data when making mini-batches, to avoid
spurious correlations from the data sequence.

2 Transform inputs to avoid mix of steep and shallow directions. A
simple trick is to subtracting the mean and normalizing the variance
(e.g. using a batch normalization layer). Whenever possible, also
decorrelate the inputs (PCA, whitening).

3 Monitor the out-of-sample performance (validation set). If the
validation error starts increasing, then the model is beginning to
overfit.

4 Adaptive optimization methods (ADAM, RMSprop) don’t always
have good generalization compared to SGD or SGD with
momentum, particularly when the number of parameters exceeds the
number of data points (Wilson et al., 2017).

See: Bottou, 2012; LeCun et al., 1998b; Tieleman and Hinton, 2012.
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