Autoencoders and PCA

F. Noé!

Deep Learning Classes, FU Berlin 2018

1/19

Data and Linear Projections

o Dataset X e RT*"

X1(t=1) XD(tZI)
X — . .

2/19

Data and Linear Projections

o Dataset X e RT*"

X1(t=1) XD(tZI)

ql(t=T) - xp(t=T)

@ Assume that this data is empirically mean-free, i.e.

T
Z X,'(t) =0 Vi.
t=1

If that is not the case, we remove the mean and store it for later use.

2/19

Data and Linear Projections

o Dataset X e RT*"

X1(t=1) XD(tZI)

ql(t=T) - xp(t=T)

@ Assume that this data is empirically mean-free, i.e.

-
Z X,'(t) =0 Vi.
t=1
If that is not the case, we remove the mean and store it for later use.
@ Objective: find vectors w € R” that define linear projections
y = Xw
and are in some sense optimal (different methods arise from different

optimality criteria).
2/19

Data and Linear Projections

o Generalization: search projection matrix W € R with m < n
which projects the data onto a linear subspace:

Y = XW.

3/19

Data and Linear Projections

o Generalization: search projection matrix W € R with m < n
which projects the data onto a linear subspace:

Y = XW.

e m < n: W performs a dimension reduction (often m < n).

3/19

Data and Linear Projections

o Generalization: search projection matrix W € R with m < n
which projects the data onto a linear subspace:

Y = XW.

e m < n: W performs a dimension reduction (often m < n).

@ Generally, dimension reduction involves lossy compression, i.e.
information in the neglected dimensions is discarded.

3/19

Data and Linear Projections

o Generalization: search projection matrix W € R"*™ with m < n
which projects the data onto a linear subspace:

Y = XW.

4/19

Data and Linear Projections

o Generalization: search projection matrix W € R"*™ with m < n
which projects the data onto a linear subspace:

Y = XW.

e Find W by minimizing loss or maximizing score.

4/19

Data and Linear Projections

o Generalization: search projection matrix W € R"*™ with m < n
which projects the data onto a linear subspace:

Y = XW.

e Find W by minimizing loss or maximizing score.
o ldea: find vectors Wy, = [wy, ...wp,] that ...

e maximize the explained variance, i.e. the variance of projected data

(y1, .--ym). For a given direction y =y;, using the fact that data is
mean-free, we have:

maxz:yt2 =max)_ ([Xw||?
T T

4/19

Data and Linear Projections

o Generalization: search projection matrix W € R"*™ with m < n
which projects the data onto a linear subspace:

Y = XW.

e Find W by minimizing loss or maximizing score.
o ldea: find vectors Wy, = [wy, ...wp,] that ...

e maximize the explained variance, i.e. the variance of projected data
(y1, .--ym). For a given direction y =y;, using the fact that data is

mean-free, we have:

maxz:yt2 =max)_ ([Xw||?
T T

e minimize the reconstruction error, i.e. the difference between the
original data X and the reconstructed data XWW ' :

min || X — XWwW T ||2

4/19

Principal Component Analysis (PCA)

Example

—40}L

—60
-60 -40 =20 0 20 40 60

5/19

Principal Component Analysis (PCA)

First principal component: we seek the direction along which the data
has the maximum variance:

wi = argmax { | Xw||?} = argmax {WTXTXW}

[|wl|=1 wi=1

6/19

Principal Component Analysis (PCA)

First principal component: we seek the direction along which the data
has the maximum variance:

wi = argmax { | Xw||?} = argmax {WTXTXW}

[|wl|=1 wi=1

Thus wy; maximizes the Rayleigh quotient

w X Xw
wlw

W71 = arg max {

6/19

Principal Component Analysis (PCA)

First principal component: we seek the direction along which the data
has the maximum variance:

wi = argmax { | Xw||?} = argmax {WTXTXW}

[|wl|=1 w|=1
Thus wy; maximizes the Rayleigh quotient

wTXTXw}

W71 = arg max T
w'w

For a symmetric matrix X' X the Rayleigh quotient is maximized by the
largest eigenvalue of the matrix, which occurs when w is the
corresponding eigenvector.

6/19

Principal Component Analysis (PCA)

Further principal components: The kth component can be found by
subtracting the first k — 1 principal components from X:

k—1
Xi=X=Y Xwsw,
s=1

7/19

Principal Component Analysis (PCA)

Further principal components: The kth component can be found by
subtracting the first k — 1 principal components from X:

k—1
Xi=X=Y Xwsw,
s=1

and then finding the loading vector which extracts the maximum variance
from this new data matrix

WTW

WT)?Z)?;(W
W(k) —argmax § —s——

7/19

Principal Component Analysis (PCA)

Further principal components: The kth component can be found by
subtracting the first k — 1 principal components from X:

k—1
Xi=X=Y Xwsw,
s=1

and then finding the loading vector which extracts the maximum variance
from this new data matrix

WTW

WT)?Z)?;(W
W(k) —argmax § —s——

This gives the remaining eigenvectors of X X, with the maximum values
for the quantity in brackets given by their corresponding eigenvalues.

7/19

Principal Component Analysis (PCA)

Further principal components: The kth component can be found by
subtracting the first k — 1 principal components from X:

k—1
Xi=X=Y Xwsw,
s=1

and then finding the loading vector which extracts the maximum variance
from this new data matrix

WTW

WT)?Z)?;(W
W(k) —argmax § —s——

This gives the remaining eigenvectors of X X, with the maximum values
for the quantity in brackets given by their corresponding eigenvalues.
— Columns of W can be computed as the eigenvectors of X X.

7/19

Principal Component Analysis (PCA)

Algorithm:

© Compute the covariance matrix

1
Co=—X'X,
°T T 1

which is just a scaled version of XX

8/19

Principal Component Analysis (PCA)

Algorithm:

© Compute the covariance matrix

1
Co=—X'X,
°T T 1

which is just a scaled version of XX

@ Solve the Eigenvalue problem:
CoW,‘ = G,-2W,'

with normalization w; w; = 1.

8/19

Principal Component Analysis (PCA)

Algorithm:

© Compute the covariance matrix

1

XX,
T-1

Co=

which is just a scaled version of XX

@ Solve the Eigenvalue problem:

2
CoW,‘ =O0; W;

T

with normalization w; w; = 1.

© Select m eigenvectors with largest eigenvalues.

8/19

Principal Component Analysis (PCA)

Algorithm:

© Compute the covariance matrix

1

XX,
T-1

Co=

which is just a scaled version of XX

@ Solve the Eigenvalue problem:

2
CoW,‘ =O0; W;

T

with normalization w; w; = 1.

© Select m eigenvectors with largest eigenvalues.

@ Reduce dimension from n to m with Wy, = [wy, ...wp]:

Ym=XW,,.

8/19

Principal Component Analysis (PCA)

Properties

@ Principal components are orthogonal because Cq is symmetric:

wW'w =1

9/19

Principal Component Analysis (PCA)

Properties

@ Principal components are orthogonal because Cq is symmetric:
Ww =1
@ Principal components are uncorrelated:

Y'Y=WX"TXW=W"WE2W'w = 52

9/19

Principal Component Analysis (PCA)

Properties

@ Principal components are orthogonal because Cq is symmetric:
Ww =1
@ Principal components are uncorrelated:
Y'Y=W'X"XW=W'WE?W'W = 32
© PCA eigenvalues indicate variances along principal components:

2 T
G = YiYi

A method to determine m is the cumulative explained variance:

(3 (59

9/19

Principal Component Analysis (PCA)

Properties

@ Principal components are orthogonal because Cq is symmetric:
Ww =1
@ Principal components are uncorrelated:
Y'Y=W'X"XW=W'WE?W'W = 32
© PCA eigenvalues indicate variances along principal components:

2 T
G = YiYi

A method to determine m is the cumulative explained variance:

(3 (£

@ Transformation into all principal components, Y = XW s loss-less:

X =XWW"

9/19

Principal Component Analysis (PCA)

Properties

@ Principal components are orthogonal because Cq is symmetric:
Ww =1
@ Principal components are uncorrelated:
Y'Y=W'X"XW=W'WE?W'W = 32
© PCA eigenvalues indicate variances along principal components:

2 T
G = YiYi

A method to determine m is the cumulative explained variance:

(3 (£

@ Transformation into all principal components, Y = XW s loss-less:
X =XWw "

@ The projection onto m < n principal components, Y, = XW,, is
lossy. It minimizes the squared reconstruction error:

IXWW T — XW,, W, [3 = [[X — X3 9/19

PCA

Example

reconstructed with 2 bases reconstructed with 10 bases

recansiructed with 100 bases raconstructed with 506 bases
- - - - moan principal basis 1
- - - - ;
3 E — —

10/19

PCA
Eigenfaces

@ Run PCA on 2429 19x19 grayscale images (CBCL data)

@ Compresses the data: can get good reconstructions with only 3
components

EEdrSSIaE MSE
= b L ey e
@ PCA for pre-processing: can apply classifier to latent representation

e PCA w/ 3 components obtains 79% accuracy on face/non-face
discrimination in test data vs. 76.8% for m.0.G with 84 states

11/19

PCA
Eigenfaces

FREANESHA
BSEEEENE
. - |
= E o
- A
HHEOEE S
—a &
HENETEES
SENEEHEES
L ~ W w !
-~
-r,"'
B3 ol
_ YL
I ~HERE o
8T8 B33 -

Autoencoder
Properties

encode > decode >

input hidden output

Use the same loss function as in PCA:

;
C(X:8) = | X~ D(E(X))|F = ; Ixi — D(E (%)) 13/19

Autoencoder versus PCA

@ Use linear encoder E € R™™ and decoder D € R™*":

E(x) = Ex
D(y) =Dy

14/19

Autoencoder versus PCA

@ Use linear encoder E € R™™ and decoder D € R™*":

E(x) = Ex
D(y) =Dy

@ The Autoencoder optimization problem becomes:

N
i ; — DEx;||%
rg]g; i xil[F

14/19

Autoencoder versus PCA

@ Use linear encoder E € R™™ and decoder D € R™*":

E(x) = Ex
D(y) =Dy

@ The Autoencoder optimization problem becomes:
Al 2
min x; — DEXx;
mio Y. I~ DExi}

@ For choice E=W,, and D = W, the linear Autoencoder is
equivalent to PCA, which provides the optimal solution.

14/19

Autoencoder versus PCA

@ Use linear encoder E € R™™ and decoder D € R™*":

E(x) = Ex
D(y) =Dy

The Autoencoder optimization problem becomes:
Al 2
min x; — DEXx;
mio Y. I~ DExi}

For choice E=W,, and D = W/, the linear Autoencoder is
equivalent to PCA, which provides the optimal solution.

@ For nonlinear E and D, the Autoencoder performs a “nonlinear PCA”

14/19

Autoencoder versus PCA
Method Comparison

Real data

30-d deep autoencoder
30-d logistic PCA

30-d PCA

15/19

Neural Autoencoder architectures
Dense Neural Network

encode > decode >

input hidden output

16/19

Neural Autoencoder Architectures
Convolutional Neural Network

@ Convolution of x € R” with w € R¥, using k < n and “valid
padding”, can be written as linear operation

y =Wx (1)
with W € R"~%+1%" heing a Toeplitz matrix:

wy Wi
W:

wq cee Wk

17/19

Neural Autoencoder Architectures
Convolutional Neural Network

@ Convolution of x € R” with w € R¥, using k < n and “valid
padding”, can be written as linear operation

y =Wx (1)
with W € R"~%+1%" heing a Toeplitz matrix:

W =
wy e Wk
e Convolutions make the dimension of the data array smaller (valid

padding) or leave it equal (zero padding). They cannot increase the
dimension.

17/19

Neural Autoencoder Architectures
Convolutional Neural Network
o Transposed convolutions: To increase the dimension, we consider
x € RP. y € R9, p < g and convolve using
y=W'x

where WT € R9%P increases the size of the input array and has
learnable parameters:

w1

Wik

18/19

Neural Autoencoder Architectures
Convolutional Neural Network

o Transposed convolutions: To increase the dimension, we consider
x € RP. y € R9, p < g and convolve using

y=W'x

where WT € R9%P increases the size of the input array and has
learnable parameters:

w1
WT = Wi wi

Wik

@ In practice, one does not apply Toeplitz matrices to implement
convolutions because they consist mostly of zeros. Instead, we use a
trick to employ the implementation of standard convolution layers to 18/19
compute transposed convolutions.

Reminder: Forward and Backward Pass

e Symbols:

W: Weight matrix
x: neural output activations at layer /,
o(+): nonlinear activation function,

/

. At Faar I _ I =1 i
z': neural activations before nonlinearity, z; = Y, wy x, ~ + b;

19/19

Reminder: Forward and Backward Pass

e Symbols:
W: Weight matrix
x: neural output activations at layer /,
o(+): nonlinear activation function,
z': neural activations before nonlinearity, z,-’ =Y w.’kx,’(’1 + b}

1.

o Forward pass (assuming no bias, b’ = 0):
S Wiy

<+l — o (W/HX/) .

19/19

Reminder: Forward and Backward Pass

e Symbols:
W: Weight matrix
x: neural output activations at layer /,
o(+): nonlinear activation function,
/

. At Faar I _ I =1 i
z': neural activations before nonlinearity, z; = Y, wy x, ~ + b;

o Forward pass (assuming no bias, b’ = 0):
S Wiy

xXtl=¢ (W/Hx’) .
o Backward pass (using the definition of error e/ = dC/dz}):

eI(: G/(Z,-l) Z eJ{+1 WJ-I;H
J

eI: G/(ZI)(WH-I)TeH-l

19/19

Reminder: Forward and Backward Pass

e Symbols:

W: Weight matrix

x: neural output activations at layer /,

o(+): nonlinear activation function,
/

z': neural activations before nonlinearity, z,-’ =Y w,.’kx,’(’1 + b}
o Forward pass (assuming no bias, b’ = 0):
21— Wiy
<+l — o (W/HX/) .
o Backward pass (using the definition of error e/ = dC/dz}):
I_ 1ol 41, 1+1
€=0 (Zi)zej Wi
J
eI: G/(ZI)(WI+1)TeI+1

@ — Transposed convolution can be implemented by exchanging 19/19
forward and backward pass.

