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ConvNets
LeCun 1989

Convolutional neural networks (ConvNets, CNNs), have a special
network architecture that is suitable for exploiting invariances, e.g.
translational invariance.
Traditional CNNs are suited for data with a grid-like topology, e.g.:
discretized time-series such as audio (1D), pixelated images (2D)
In neural networks, convolutions are typically used in conjunction
with a nonlinear transform (detector layer) and a pooling layer:

↑
Pooling Layer Compresses image

↑
Detector Layer Nonlinear transform

↑
Convolution Layer Affine transform

↑
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ConvNets
LeCun 1989

Mathematical basis: convolution operation

y(b) = (x ∗w)(b) =
∫

∞

a=−∞

x(a)w(b−a)da

Discrete convolution:

yi = (x∗w)i = ∑
j

xjwi−j = ∑
j

wjxi−j

Here we have used that convolution is commutative:

x ∗w = w ∗ x

Here we call:
x input
w kernel
y output or feature map
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ConvNets
LeCun 1989

Convolution is a linear operation. To see that, let us use x ∈ R5 and
w ∈ R3 as an example. As the j-sum can only run from 2 to 4, we
get three equations for y:

y2 = w1x1 + w2x2 + w3x3 = (w1,w2,w3,0,0)>x
y3 = w2x2 + w3x3 + w4x4 = (0,w1,w2,w3,0)>x
y4 = w3x3 + w4x4 + w5x5 = (0,0,w1,w2,w3)>x

Convolving x ∈ Rn with w ∈ Rm, m ≤ n can be written as linear
operation

y = Wx
with W ∈ Rn−m+1×n being a Toeplitz matrix:

W =

 w1 · · · wm
. . . . . .

w1 · · · wm


Here we have assumed that the index j in the convolution cannot go
outside the indices of the input x. As a result, the convolved output
y will have a reduced dimension n−m +1. In practice, we often use
zero padding.
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ConvNets

Multidimensional convolution, e.g. 2D:

Yij = (K ∗X )ij = ∑
m

∑
n

Xi−m,j−nKm,n

Many ML libraries use the cross-convolution function, which is
almost identical to convolution, just with flipped indices:

Yij = (X ∗K )ij = ∑
m

∑
n

Xi+m,j+nKm,n
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ConvNets
Example

1

1From Goodfellow, Bengio and Courville: Deep Learning, MIT Press (2016)
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ConvNets
Motivation: Sparse interactions, parameter sharing, equivariance

1

Sparse connectivity – makes computations faster
Each input dim. only affects some output dims.
Limited receptive field: Each output only depends on some inputs.
In deep CNNS, units of later layers can still receive the entire input.

1From Goodfellow, Bengio and Courville: Deep Learning, MIT Press (2016)
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ConvNets
Motivation: Sparse interactions, parameter sharing, equivariance

1

Conv Layer: Same parameters are used everywhere in the image.
Reduces storage requirements and training problem.
Dense Layer: No parameter sharing, many more degrees of
freedom.
Essential for image processing. Example: Input 512×512 image has
262144 pixels. A dense layer to an output of similar size would have
68×109 parameters.

1From Goodfellow, Bengio and Courville: Deep Learning, MIT Press (2016)
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ConvNets
Motivation: Sparse interactions, parameter sharing, equivariance

Edge detection using Y = ([−1 1]∗X )

1

Conv Layer:
Kernel K has 2 elements
Requires 319×280×3= 267,960 FLOPs (2 mult. + 1 add. per
output)

Dense Layer:
320×280×319×280= 8.028×109 matrix entries
15.056×109 FLOPs

1From Goodfellow, Bengio and Courville: Deep Learning, MIT Press (2016)
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ConvNets
Motivation: Sparse interactions, parameter sharing, equivariance

Function f is equivariant to a function g if f (g(x)) = g(f (x)) - if
the input changes, the output changes in the same way

X g−→ X ′
f ↓ f ↓
Y g−→ Y ′

f is convolution with kernel K – f : Y = K ∗X
g is translation: X ′ = g(X), X ′ij = Xi−u,j−v .
Equivariance: g(K ∗X) = K ∗g(X)

Note: Equivariance does not automatically hold on the image
boundary. Often one performs zero-padding in order to obtain
equivariance everywhere.
Convolution creates a 2-D map of where certain features appear in
the input. If we move the object in the input, its representation will
move the same amount in the output.
Convolution is not intrinsically equivariant to other transformations,
e.g. rotation or scaling.
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Zero padding

1

Top: without zero padding, image size is reduced upon convolution.
Bottom: with zero padding, image size stays constant.

1From Goodfellow, Bengio and Courville: Deep Learning, MIT Press (2016)
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Zero padding

without zero padding:
image size is reduced upon convolution.
Often called valid convolution in algebra packages
We are forced to choose between shrinking the spatial extent of the
network rapidly or using small kernels—both scenarios that
significantly limit the expressive power of the network.

with zero padding:
image size stays constant. Arbitrarily deep convolutional networks
can be used.
Allows us to control the kernel width and the size of the output
independently.
same convolution: enough zeros are padded to make output size
equal to input. Input pixels near the border influence fewer output
pixels than the input pixels near the center, can result in
underrespresentation of border pixels.
full convolution: enough zeroes are added for every pixel to be
visited k times in each direction, resulting in an output image of
width m+k−1. In this case, the output pixels near the border are a
function of fewer pixels than the output pixels near the center.



12/28

Zero padding

without zero padding:
image size is reduced upon convolution.
Often called valid convolution in algebra packages
We are forced to choose between shrinking the spatial extent of the
network rapidly or using small kernels—both scenarios that
significantly limit the expressive power of the network.

with zero padding:
image size stays constant. Arbitrarily deep convolutional networks
can be used.
Allows us to control the kernel width and the size of the output
independently.
same convolution: enough zeros are padded to make output size
equal to input. Input pixels near the border influence fewer output
pixels than the input pixels near the center, can result in
underrespresentation of border pixels.
full convolution: enough zeroes are added for every pixel to be
visited k times in each direction, resulting in an output image of
width m+k−1. In this case, the output pixels near the border are a
function of fewer pixels than the output pixels near the center.



12/28

Zero padding

without zero padding:
image size is reduced upon convolution.
Often called valid convolution in algebra packages
We are forced to choose between shrinking the spatial extent of the
network rapidly or using small kernels—both scenarios that
significantly limit the expressive power of the network.

with zero padding:
image size stays constant. Arbitrarily deep convolutional networks
can be used.
Allows us to control the kernel width and the size of the output
independently.
same convolution: enough zeros are padded to make output size
equal to input. Input pixels near the border influence fewer output
pixels than the input pixels near the center, can result in
underrespresentation of border pixels.
full convolution: enough zeroes are added for every pixel to be
visited k times in each direction, resulting in an output image of
width m+k−1. In this case, the output pixels near the border are a
function of fewer pixels than the output pixels near the center.



12/28

Zero padding

without zero padding:
image size is reduced upon convolution.
Often called valid convolution in algebra packages
We are forced to choose between shrinking the spatial extent of the
network rapidly or using small kernels—both scenarios that
significantly limit the expressive power of the network.

with zero padding:
image size stays constant. Arbitrarily deep convolutional networks
can be used.
Allows us to control the kernel width and the size of the output
independently.
same convolution: enough zeros are padded to make output size
equal to input. Input pixels near the border influence fewer output
pixels than the input pixels near the center, can result in
underrespresentation of border pixels.
full convolution: enough zeroes are added for every pixel to be
visited k times in each direction, resulting in an output image of
width m+k−1. In this case, the output pixels near the border are a
function of fewer pixels than the output pixels near the center.



12/28

Zero padding

without zero padding:
image size is reduced upon convolution.
Often called valid convolution in algebra packages
We are forced to choose between shrinking the spatial extent of the
network rapidly or using small kernels—both scenarios that
significantly limit the expressive power of the network.

with zero padding:
image size stays constant. Arbitrarily deep convolutional networks
can be used.
Allows us to control the kernel width and the size of the output
independently.
same convolution: enough zeros are padded to make output size
equal to input. Input pixels near the border influence fewer output
pixels than the input pixels near the center, can result in
underrespresentation of border pixels.
full convolution: enough zeroes are added for every pixel to be
visited k times in each direction, resulting in an output image of
width m+k−1. In this case, the output pixels near the border are a
function of fewer pixels than the output pixels near the center.



12/28

Zero padding

without zero padding:
image size is reduced upon convolution.
Often called valid convolution in algebra packages
We are forced to choose between shrinking the spatial extent of the
network rapidly or using small kernels—both scenarios that
significantly limit the expressive power of the network.

with zero padding:
image size stays constant. Arbitrarily deep convolutional networks
can be used.
Allows us to control the kernel width and the size of the output
independently.
same convolution: enough zeros are padded to make output size
equal to input. Input pixels near the border influence fewer output
pixels than the input pixels near the center, can result in
underrespresentation of border pixels.
full convolution: enough zeroes are added for every pixel to be
visited k times in each direction, resulting in an output image of
width m+k−1. In this case, the output pixels near the border are a
function of fewer pixels than the output pixels near the center.



12/28

Zero padding

without zero padding:
image size is reduced upon convolution.
Often called valid convolution in algebra packages
We are forced to choose between shrinking the spatial extent of the
network rapidly or using small kernels—both scenarios that
significantly limit the expressive power of the network.

with zero padding:
image size stays constant. Arbitrarily deep convolutional networks
can be used.
Allows us to control the kernel width and the size of the output
independently.
same convolution: enough zeros are padded to make output size
equal to input. Input pixels near the border influence fewer output
pixels than the input pixels near the center, can result in
underrespresentation of border pixels.
full convolution: enough zeroes are added for every pixel to be
visited k times in each direction, resulting in an output image of
width m+k−1. In this case, the output pixels near the border are a
function of fewer pixels than the output pixels near the center.



13/28

Pooling

Reminder:
↑

Pooling Layer Compresses image
↑

Detector Layer Nonlinear transform
↑

Convolution Layer Affine transform
↑

Examples:
max pooling of a rectangular neighborhood (Zhou and Chellappa,
1988), e.g. 2×2 filter with stride 2:

1

average of a rectangular neighborhood
L2 norm of a rectangular neighborhood
weighted average based on the distance from the central pixel.

1From Goodfellow, Bengio and Courville: Deep Learning, MIT Press (2016)
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Pooling

Using stride > 1 significantly reduces the size of the output →
reduce memory and CPU requirements.
Pooling useful for handling inputs of different sizes. Offsets can be
varied such that the classification layer always receives the same
number of summary statistics regardless of the input size.
Example: final pooling layer of the network may be defined to
output four sets of summary statistics, one for each quadrant of an
image, regardless of the image size).
Pooling over spatial regions makes the representation approximately
invariant to small translations at the input (most pixels of Y do not
change upon small translations of X ) → useful if we want to detect
whether a feature is present rather where it is.
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Pooling

1

Example: each input pixel has changed, but only half of the output pixels
have changed.

1From Goodfellow, Bengio and Courville: Deep Learning, MIT Press (2016)
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Pooling

By pooling over separate convolution, the features can learn which
transformations to become invariant to:

1

Which pooling should I use? (Boureau et al., 2010).
Dynamical pooling (Boureau et al., 2011).
Adaptive pooling (Jia et al., 2012).

1From Goodfellow, Bengio and Courville: Deep Learning, MIT Press (2016)
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Convolution as infinitely strong prior

Reminder: Prior distribution – probability distribution over model
parameters encoding assessment of likely models before having seen
any data.
Weak prior: high entropy, e.g. Gaussian with high variance allows
the data to move the parameters more or less freely.
Strong prior: low entropy, e.g. Gaussian with low variance. More
strongly restricts the parameter values.
Infinitely strong prior: places zero probability on some parameter
values.
Convolutional layer: similar to densely connected layer, but:

weights for one hidden unit must be identical to the weights of its
neighbor, but shifted in space
enforcing that with zero probability on parameters outside receptive
field.
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Multi-channel convolution

Input has usually multiple channels (e.g. RGB for images).
Images: input X and output Y are 3d tensors
(channel× i pos× j pos).
Software: usually use batches and 4d tensors
(batch− index× channel× i pos× j pos)
For multi-channel convolution, linear operations are not guaranteed
to be commutative, unless each operation has the same number of
input and output channels.
Multi-channel convolution: 4d Kernel K with Ki ,j,k,l : connection
strength between a unit in channel i of output and a unit in channel
j of input, with offset of k rows and l columns between the output
unit and the input unit.

Yi ,j,k = ∑
l ,m,n

Xl ,j+m−1,k+n−1Ki ,l ,m,n

where l ,m,n sums over all valid indices.
To reduce computational cost, it is possible to use a stride in the
convolution operation.
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Locally connected layers

Also called unshared convolution (LeCun, 1986, 1989)
adjacency matrix in the graph of our MLP is the same, but every
connection has its own weight, specified by a 6-D tensor W with
indices: output channel, row, column i , j ,k, input channel, row
offset, column offset l ,m,n:

Yi ,j,k = ∑
l ,m,n

Xl ,j+m−1,k+n−1Wi ,j,k,l ,m,n

useful when a feature is a function of a small region, but not
independent of where it is in the picture.
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Tiled convolution
Compromise between a convolutional layer and a locally connected
layer
Rather than learning a separate set of weights at every spatial
location, we learn a set of kernels that we rotate through as we
move through space.
Neighboring locations have different filters, as in locally connected
layer, but memory requirements for parameters increase only by a
factor of the size of this set of kernels.

1
1From Goodfellow, Bengio and Courville: Deep Learning, MIT Press (2016)
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Examples

Single channel Multi-channel
1d Audio waveform
2d Grayscale image Color images
3d Volumetric data (CT, MRI) Color video
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Efficient Convolution Algorithms

Convolution can be implemented using fast Fourier transform:

K ∗X = F−1 (F (K )�F (X ))

where � is point-wise multiplication and F , F−1 are forward and
inverse Fourier transform. This approach is efficient for convolution
of large images/kernels.
When a d-dimensional kernel K can be expressed as the outer
product of d vectors, e.g.:

K = uv>,

then K is called separable. Convolution with K can then be
composed by d one-dimensional convolutions with each of these
vectors.
A kernel with w elements and d dimensions requires generally
O(wd ) runtime and parameter storage space, but only requires
O(wd) runtime and parameter storage space when separable.
Developing faster ways (algorithmic and hardware) to perform
convolutions is an active area of reasearch.
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Random and unsupervised features
Most expensive part of ConvNet training is learning the features.
Conv layers are usually much larger than the output layer due to
pooling.
ConvNet training cost can be reduced by using features that are not
trained with supervised learning.
Three strategies:

1 Random features: often work surprisingly well in convolutional
networks (Jarrett et al., 2009; Saxe et al., 2011; Pinto et al., 2011;
Cox and Pinto, 2011).

2 Manually designed features
3 Unsupervised features:

Greedy layer-wise pretraining, to train the first layer in isolation, then
extract all features from the first layer only once, then train the
second layer in isolation given those features, and so on.
Convolutional deep belief network (Lee et al., 2009)
Coates et al. (2011): k-means clustering to small image patches,
then use each learned centroid as a convolution kernel. Can train
very large models. Full computational cost only at inference time.
Approach popular in 2007–2013, when labeled datasets were small
and computational power was more limited.
Today, most convolutional networks are trained purely supervised.
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ConvNets vs mammalian vision

Pioneering neuroscientists: Hubel and Wiesel (1959, 1962, 1968):
Discrovered basic functionality of mammalian vision system by
recording individual neuron activity in cats
Neurons in the early visual system respond mostly to specific
patterns of light, such as precisely oriented bars.

Primary visual cortex (V1): first brain area that performs advanced
processing of visual input → inspires ConvNets

V1 is arranged in 2d spatial map, mirroring the image in the retina.
→ inspires 2d structure of ConvNets.
V1 simple cells respond approximately linearly to a small, spatially
localized receptive field.
→ inspires ConvNet detector units
Most simple cells seem to perform convolutions whose weights are
described by Gabor functions.
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ConvNets vs mammalian vision

Gabor functions:

w(x ,y ;α,βx ,βy , f ,φ ,x0,y0,τ) = α exp−βx x̄2−βy ȳ2 cos(f x̄ + φ)

x̄ = (x −x0)cos(τ) + (y −y0)sin(τ)

ȳ = (y −y0)cos(τ)− (x −x0)sin(τ)

→ many learning algorithms, include ConvNets, learn Gabor-like features
when applied to natural images
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ConvNets vs mammalian vision

V1 complex cells respond to features as simple cells, but invariant
to small position shifts
→ inspires pooling units.
invariant to some changes in lighting
→ inspires cross-channel pooling.
Assumption: basic strategy of detection and pooling is repeated in
deeper brain layers.
Grandmother cells (concept): a neuron that activates when a
person sees an image of their grandmother, regardless of position in
the image, close-up or full-body short, brightly lit or in shadows etc.
→ have been shown to exist in the medial temporal lobe in the
human brain (Quiroga et al., 2005).
Halle Berry neuron (concept): an individual neuron that is
activated by the concept of Halle Berry (seeing a photo or a drawing
of Halle Berry, or reading text “Halle Berry”)
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ConvNets vs mammalian vision: Differences

Human eye mostly low resolution, except for a tiny patch, with a
size of a thumbnail held at arms length (fovea). Perception to see
an entire scene in high resolution is an illusion stitched together
from glimpses of small areas.
Visual models with foveation mechanisms have been developed but
so far have not become the dominant approach (Larochelle and
Hinton, 2010; Denil et al., 2012)
The human visual system is integrated with many other senses, such
as hearing, and factors like our moods and thoughts. Convolutional
networks so far are purely visual.
Human visual system does much more than just recognize objects. It
is able to understand entire scenes including many objects and
relationships between objects (see Capsule networks)
Simple brain areas like V1 are heavily impacted by feedback from
higher levels.
Brains cells are much more complicated and diverse than artificial
neurons
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Random and unsupervised features

Neural network research group at AT&T developed a convolutional
network for reading checks (LeCun et al., 1998b). By the end of the
1990s, this system deployed by NEC was reading over 10% of all the
checks in the US.
Several OCR and handwriting recognition systems based on
convolutional nets were deployed by Microsoft (Simard et al., 2003).
Current intensity of commercial interest in deep learning began when
Krizhevsky et al. (2012) won the ImageNet object recognition
challenge
Convolutional nets were some of the first working deep networks
trained with back-propagation



28/28

Random and unsupervised features

Neural network research group at AT&T developed a convolutional
network for reading checks (LeCun et al., 1998b). By the end of the
1990s, this system deployed by NEC was reading over 10% of all the
checks in the US.
Several OCR and handwriting recognition systems based on
convolutional nets were deployed by Microsoft (Simard et al., 2003).
Current intensity of commercial interest in deep learning began when
Krizhevsky et al. (2012) won the ImageNet object recognition
challenge
Convolutional nets were some of the first working deep networks
trained with back-propagation



28/28

Random and unsupervised features

Neural network research group at AT&T developed a convolutional
network for reading checks (LeCun et al., 1998b). By the end of the
1990s, this system deployed by NEC was reading over 10% of all the
checks in the US.
Several OCR and handwriting recognition systems based on
convolutional nets were deployed by Microsoft (Simard et al., 2003).
Current intensity of commercial interest in deep learning began when
Krizhevsky et al. (2012) won the ImageNet object recognition
challenge
Convolutional nets were some of the first working deep networks
trained with back-propagation



28/28

Random and unsupervised features

Neural network research group at AT&T developed a convolutional
network for reading checks (LeCun et al., 1998b). By the end of the
1990s, this system deployed by NEC was reading over 10% of all the
checks in the US.
Several OCR and handwriting recognition systems based on
convolutional nets were deployed by Microsoft (Simard et al., 2003).
Current intensity of commercial interest in deep learning began when
Krizhevsky et al. (2012) won the ImageNet object recognition
challenge
Convolutional nets were some of the first working deep networks
trained with back-propagation


