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2 Introduction

Physical systems are inherently nonlinear. The sources of nonlinearity may be geometric, in-

ertial, material, damping, or a combination of them. Nonlinearities generate a whole range of

nontrivial phenomena. For instance, in the case of a single degree of freedom system, we may

have multiple solutions, jumps, limit cycles, subharmonic and superharmonic resonances, period-

doubling bifurcations and chaos.

The behavior of continuous systems is richer since it theoretically includes the contribution of

an infinite number of degrees-of-freedom. From a practical point of view, only a few number

of modes contribute to the dynamics due to the existence of dissipation. Thus, in addition to

the above mentioned nontrivial phenomena, the exchange of energy in the response of multi-

degree-of-freedom systems can be achieved through internal resonances of the natural modes

and through Hopf bifurcations of the directly excited mode. For a review, see the book by A.

H. Nayfeh [Nonlinear interactions: analytical, computational and experimental methods, Wiley

Interscience, 2000].

In what follows, we investigate experimentally and theoretically the dynamics of a cantilevered

beam subject to a periodic motion of its support. The natural frequencies and modal damping

are determined experimentally. Nonlinear phenomena related to a one mode model are explored.

The energy exchange between the third or the fourth mode and the first mode are investigated.

A theoretical model is proposed and numerical simulations are shown.

In the first part of the present project we have embarked on a careful detailed analysis of an actual

vibrating block, as described in section 3, with or without the presence of magnetic fields. As we

describe in the following sections, we have observed chaotic dynamic behavior which clearly and

visibly involves more than one spatial mode. The third mode and the fourth mode experiment

has also been investigated in a second experimental model. Furthermore, we study the flexural

vibration modes of a cantilever beam governed by a one-dimensional version of the mathematical

model for the linear elastic system with structural damping. We discuss the mode shapes for

different values of the damping coefficient. In section 4, we present a theoretical model which

describes the in-plane vibrations of a cantilevered beam subject to periodic support motions. A

single mode is considered and softening effects of nonlinearities are shown through a perturbation

method. Then, a multi-modes model is investigated and the transfer of energy from the third

mode to the first mode is shown. In section 5, we analyze the effect of an axial rapid harmonic
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forcing on the stabilization of flexible beams in a single mode approximation. In addition, we

assume that the system is controlled by a proportional position feedback with a time delay. Then

we examine the spectrum of natural frequencies and the stability chart of the trivial equilibrium

of the structure. In the second part of this section, we study the effect of a rapid temporal

excitation on the existence of periodic motions. The control with time delay is also discussed.

The last part deals with the effect of rapid excitation on the frequency-locking (entrainment) area

in a self-excited system. In particular, we have shown that a rapid temporal forcing can change

the nonlinear characteristic stiffness of the material by shifting the behavior from hardening to

softening and vice versa. This control strategy in homogenous systems can play an important

role to understand the effect due to layering in materials. In section 6 we present some results

on the suppression of chaos in different situations and give results on the homoclinic criterion

in the case of a three-dimensional system. Section 7 presents the development relevance of the

project. In the two last sections 1.8 and 1.8.2, we give the publication and the dissertation lists,

respectively, of the Casablanca group since 2002.

3 Experimental work

The experimental system investigated in this research project is the cantilevered elastic beam.

This system is an experimental apparatus for studying nonlinear dynamics and testing new ideas

like interaction phenomena, transfer of energy from high modes to lower modes, or controlling

and suppressing resonant vibrations and chaotic dynamics.

In this section the experimental set up is presented. The flexural vibrational behaviors of two

types of beams are investigated. The first type is subject to the support motion and to a magnetic

field effect, and the second model is softer and is subject only to the periodic base excitation.

3.1 Experimental set up

The following equipment was used to perform the modal analysis experiment

• Elastic beams mounted on a rigid support

• Two magnets

• Electromagnetic shaker

• Power amplifier
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• Accelerometers

• Power supply

• Digital oscilloscope

• AC driving function generator.

These elements as well as the set-up experiment may be visualized in the following files on the

CD-ROM:

• ”key−elements/oscillo.JPG”,

• ”key−elements/power−gener.JPG”,

• ”key−elements/power−sup.JPG”,

• ”key−elements/shaker−acc.JPG”,

• ”key−elements/vue−exp.JPG”.

For the first beam, near the free end, two magnets are used to produce a nonlinear, time indepen-

dent magnetic field, alias potential, with at most two stable equilibria. The beam is subjected

to the harmonic signal produced by the function generator. The signal is then amplified towards

the shaker. The data are obtained using two devices: an accelerometer and an inductance coil.

The digital oscilloscope records time series and Lissajous curves.

For the second beam, the experiments are done in the presence of a base displacement and in

the absence of magnetic field.

3.2 First experimental model

To investigate the effect of a magnetic force and the motion of the base, we consider a steel

beam with dimensions 238 mm × 10 mm × 0.5 mm and a density of 7800kg/m3, (see Fig.1).

Experimental investigations of the response of this beam allowed us the observation of linear and

nonlinear phenomena.

In the first stage we have measured resonance frequencies corresponding to the first six resonance

modes in the linear free case without the magnets. Comparisons with the analytical predictions

in the undamped case were carried out, without any satisfactory agreement. For an analysis

which includes damping, see section 3.2.1.
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Signal Amplifier Shaker
Generator

Digital 

Oscilloscope

coilaccelerometer

magnets

Figure 1: Experimental set-up

In the second step we have studied the response of the beam near the first and the second spatial

mode. The investigation of the first mode (with the magnets) shows breather phenomena of this

mode and chaotic responses of the beam; see the corresponding files in the enclosed CD-ROM:

• ”mode1/breathers−plain040327.MOV”,

• ”mode1/chaos−ind−040331.MOV”,

• ”mode1/chaos−plain−030404.MOV”.

For the second spatial mode, we have observed transition phenomena between the bottom, the

top, and the central position; see in CD-ROM:

• ”mode12/trans−bot−cent−plain030404.MOV”,

• ”mode12/trans−bot−top−cent−plain030404.MOV”,

• ”mode12/trans−bot−top−plain030404.MOV”,

• ”mode12/trans−top−to−cent−plain030404.MOV”,

• ”mode12/trans−torus−top−plain040327a.MOV”,

• ”mode12/trans−torus−top−plain040327b.MOV”.

In other words, the beam vibrating in the second mode around the top magnet position can

experience transitions to vibrations around the bottom position and around the central position

between the two magnets. The transitions involve first mode components, and hence require an

12



ordinary differential equation analysis involving at least two degrees of freedom. We have also

observed toröıdal subharmonics, chaotic motions, and bi-stability phenomena of the beam; see

in CD-ROM:

• ”mode12/hand−bistab−plain030404.MOV”,

• ”mode12/hand−chaos−plain030404.MOV”.

Other observations show that in the presence of the second mode Hopf bifurcation can take place

towards a periodic motion around the top magnet position, around the bottom one, or between

them; see in CD-ROM:

• ”mode12/Hopf−bot−plain040327.MOV”,

• ”mode12/Hopf−cent−plain040327a.MOV”,

• ”mode12/Hopf−cent−plain040327b.MOV”,

• ”mode12/Hopf−cent−plain040327Detail.MOV”,

• ”mode12/Hopf−top−plain040327.MOV”.

For this phenomenon, the stable respective position of the vibrating second mode becomes un-

stable, and periodic oscillation set in. It was observed that the periodic motions persist when we

increase the distance between the magnets by a factor three; see in CD-ROM:

• ”mode12/Still−1to3−040401a.JPG”,

• ”mode12/Still−1to3−040401b.JPG”,

• ”mode12/Still−1to3−040401c.JPG”,

• ”mode12/Still−1to3−040401d.JPG”.

A physical explanation of this phenomenon is that the amplitude of the second mode, which

is being directly excited through a resonance, saturates and the extra energy that it receives is

passed on to the first mode, which is indirectly excited through the second mode. This two-mode

vibration corresponds to a nonlinear periodic motion of the beam. The saturation phenomenon

can play a vital role to control or suppress the resonant vibrations of thin layer material elastic

beam, which is of central interest in this project.
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Moreover, the chaotic energy transport from higher to lower spatial modes, which we observe

in the elastic beam, is just the opposite of conventional wisdom in fluid mechanics. There, the

paradigm of the Kolmogorov cascade is supposed to describe energy dissipation from lower to

higher frequency modes in the spatial Fourier spectra, due to turbulence. We are therefore led

to speak of reverse energy cascades in the chaotic elastic beam.

Experimental observations of the excited beam with the magnets also show the existence of 1:7

sub-harmonic resonance; see in CD-ROM:

• ”Subh7/Subh1to7−acc−040401a.JPG”,

• ”Subh7/Subh1to7−acc−040401a−detail.JPG”,

• ”Subh7/Subh1to7−acc−040401b.JPG”,

• ”Subh7/Subh1to7−acc−040401c.JPG”,

• ”Subh7/Subh1to7−acc−040401c−detail.JPG”,

and toröıdal 1:6 and 1:7 motions of the beam; see in CD-ROM:

• ”Subh6/Torus−1to6−fix−ind040330.MOV”,

• ”Subh6/Torus−1to6−scan−ind040330a.MOV”,

• ”Subh6/Torus−1to6−scan−ind040330b.MOV”,

• ”Subh6/Torus−1to6−scan−ind040330c.MOV”,

• ”Subh7/Torus−1to7−fix−blade040.MOV”,

• ”Subh7/Torus−1to7−scan−acc−040330a.MOV”,

• ”Subh7/Torus−1to7−scan−acc−040330b.MOV”.

Using the coil near the free end of the beam, we have recorded resonance phenomena and two

sub-harmonic resonances of the second mode around the respective magnet position, and around

the central position between the magnets; see in CD-ROM:

• ”mode2/res−2har−ind040330.MOV”,

• ”mode2/res−2har−ind040330b.MOV”,
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• ”mode2/res−bot−ind040330.MOV”,

• ”mode2/res−cent−ind040330.MOV”,

• ”mode2/res−top−ind040330.MOV”,

• ”mode2/stable−top−ind040330.MOV”.

3.2.1 Linear damping

For the linear damped oscillator

ü + αu̇ + ω2u = 0 (1)

the general solution is

u(t) = exp (−α

2
t) [A sin (ωdt) + B cos (ωdt)] (2)

where A and B are constant and ωd =
√

ω2 − (α
2
)2. The damped period and frequency are given

by Td = 2π/ωd and fd = ωd/2π.

To calculate the linear proper frequencies of the beam we can use the formula ωk = n2
k

√

EI/(ρS)

where n1 L = 1.8751 ; n2 L = 4.69409 ; n3 L = 7.85476 ; n4 L = 10.9955 ; nk L ≈ (2k − 1)π/2.

In the experiment we have directly measured the damping coefficient αk of the three first modes

k = 1, 2, 3 of the linear beam modelled by the linear damped oscillator

ü + αku̇ + ω2
ku = 0 (3)

Experimentally the damping coefficients αk were determined by the logarithmic decrement δk

δk = ln(
u(t)

u(t + Td)
) =

αk

2
Td (4)

Table 1 gives experimental damping coefficients of the first three modes of flexion of the clamped/free

beam.

A second approach to measure damping αk proceeds via the expansion of solutions u(t, x) into

Galerkin modes u(t, x) =
∑

∞

k=1 uk(t)ϕk(x). Thus we obtain the linear damped pendulum equa-

tions of the form (3) above

ük + αku̇k + ω2
kuk = Ak cos(Ωt) (5)

with Ak = A
∫ L

0
ϕk/

∫ L

0
ϕ2

k and undamped reference frequencies

ωk := λ2
k (6)
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Modes k αk test1 αk test2 αk test3 αk average

1 0.001129 0.001434 0.0018 0.001454

2 0.008145 0.008106 0.008317 0.008189

3 0.0218 0.0193 0.0236 0.02156

Table 1: Experimental damping coefficients

with λk is a solution of

cos(λkL) cosh(λkL) + 1 = 0 (7)

More generally, we test our measured resonance frequencies

ω̃k =

√

ω2
k − (

αk

2
)2 (8)

for a power law dependence of the form

αk = αωβ
k (9)

See Figure 2 for a least squares log-log plot from which we derive β = 1, to whithin one per cent

accuracy.

Moreover, we note that this remarkable proportionality

αk = αωk (10)

causes all resonances frequencies ωk of the beam to be multiplied by the same constant factor

γ < 1. The measured frequencies ω̃k are thus given by

ω̃k = γωk = γλ2
k (11)

with zeros λk of (7). The same multicative frequency shift can be effected by adjusting the length

L of the beam, or its elasticity constant, and ignoring the obvious damping effects, altogether.

Nonlinearities, however, will not forgive such sloppiness. For sample tables of ω̃k/ωk see Table 2.

3.2.2 Nonlinear magnetic effects

The two magnets placed near the free end of the beam create a strong nonlinearity with respect

to the distance from the magnetic pole. This nonlinear magnetic field consists of a poten-

tial with two stable equilibria producing a destabilization of the center position of the beam.
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Figure 2: logαk-logωk plot

The interaction between elastic beam and magnetic forces usually leads to nonlinear differential

equations. The harmonic external excitation together with the nonlinear magnetic field pro-

duce interaction phenomena, harmonic, subharmonic, quasiperiodic and chaotic responses of the

beam. Experimental observations of the beam motion in presence of the magnetic field clearly

show the existence of such responses. In section 3.2 we have discussed the interaction between

the two-mode and the one-mode motions and the transfer of energy from higher to low order

and shown transition phenomenon of the response between different positions of the system. A

careful inspection of the beam response, using the accelerometer, allowed us the detection of 1:7

subharmonic resonance; see in CD-ROM:

• ”Subh7/Subh1to7−acc−040401a.JPG”,

• ”Subh7/Subh1to7−acc−040401a−detail.JPG”,

• ”Subh7/Subh1to7−acc−040401b.JPG”,
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Modes ωk theory ω̃k experiment Relative errors

mode 1 9.17 8.90 0.02

mode 2 57.5 58.5 0.017

mode 3 161 163 0.012

mode 4 315.5 320.40 0.015

mode 5 521.5 520.6 0.001

Table 2: Comparison of the frequencies of the first five modes, in Hz

• ”Subh7/Subh1to7−acc−040401c.JPG”,

• ”Subh7/Subh1to7−acc−040401c−detail.JPG”.

Another nonlinear effect observed in the experiment are Hopf bifurcations produced by the desta-

bilization of the second mode of vibration. This destabilization produces periodic oscillations of

the second mode around the three equilibria (top, center and bottom); see in CD-ROM:

• ”mode12/Hopf−bot−plain040327.MOV”,

• ”mode12/Hopf−cent−plain040327a.MOV”,

• ”mode12/Hopf−cent−plain040327b.MOV”,

• ”mode12/Hopf−cent−plain040327Detail.MOV”,

• ”mode12/Hopf−top−plain040327.MOV”.

Using a coil near the free end of the beam, we have observed resonance phenomena, toröıdal 1:6

response; see in CD-ROM:

• ”Subh6/torus−1to6−fix−ind040330.Mov”,

• ”Subh6/torus−1to6−scan−ind040330a.Mov”,

• ”Subh6/torus−1to6−scan−ind040330b.Mov”,

• ”Subh6/torus−1to6−scan−ind040330c.Mov”,

and chaotic response of the beam; see in CD-ROM:

• ”mode1/chaos−ind−040331.MOV”.
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Modes Analytical Experimental

mode 1 4.60 4.5

mode 2 28.84 28.85

mode 3 80.76 68.95

mode 4 158.26 127

mode 5 261.62 208.4

mode 6 390.82 302.7

Table 3: The in-plane natural frequencies of the first six flexural modes. Experimental and analytical values

The difficulty to adequately model the magnetic field term from a physical point of view suggests

to center interest on measuring it directly from the experiment using the acceleration component,

known from the accelerometer, ω2
k, ϕk, Ak and ω. This topic will be investigated in the future.

3.3 Second experimental model

To investigate the transfer of energy from a directly excited third-mode or fourth-mode to the

first mode, we consider a steel beam with the dimensions 300mm×13mm×0.506mm, the density

and Young´s modulus of the beam are 7800Kg/m3 and 200GPa, respectively.

In Table 3, the experimental and analytical values of the in-plane natural frequencies of the

first six flexural modes are given. In addition, the first and the second out-of-plane (i.e. in the

plane perpendicular to the plane of excitation) flexural natural frequencies of the beam were also

determined using the finite element method (FEM) model and are found to be equal to 118.057

Hz and 727.65 Hz respectively. The first and the second torsional frequencies are respectively

205.719 Hz and 586.195 Hz.

The damping coefficients of the first four in-plane flexural modes are found using the logarithmic

decrement method as ξ1 = 0.0094, ξ2 = 0.0039, ξ3 = 0.0017 and ξ4 = 0.0035.

3.3.1 Third-mode and fourth-mode experiments

The frequency- and force-response curves illustrate various characteristics of a nonlinear system

like the presence of multiple stable response, jumps, bifurcation, type of nonlinearity (softening

or hardening), etc.

For the frequency-response curve, the excitation amplitude ab was held constant at 24 (in mV)

for the third-mode and 309 (in mV) for the fourth-mode, and the excitation frequency Ω was
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varied in the neighborhood of the third and the fourth natural frequency. For the force-response

curve, the excitation frequency Ω was held constant at 68 Hz and 122.5 Hz, and the excitation

amplitude ab was varied between 70 mV and 200 mV, and 333 mV and 604 mV for the third-

and the fourth-mode, respectively. Changes in the control parameters (excitation frequency or

amplitude) were made very gradually, and, at each value of the control parameter, transients

were allowed to die out before the amplitude of the response was recorded. Data are given by

accelerometer placed near the clamped part of the beam. Data are given by an acceloremeter

placed near the part of the beam. Data obtained from both forward and backward sweeps of the

control parameter are used to plot the curves. For certain frequency ranges, a small out-of-plane

motion was also observed, which seemed to increase with an increase in the amplitude of the

beam response.

The frequency-response curves of the third- and the fourth-mode are shown in Fig.3. and Fig.4.,

respectively. They show the softening effect of the nonlinearities since the maximum response is

shifted to the left with respect to the linear curves of resonances.
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Figure 3: Frequency-response curve of the third-mode when ab = 24mV

Well away from the third and the fourth natural frequencies, the only modes present in the beam

responses are the third and the fourth mode. This can be easily confirmed by a visual inspection of

the beam motion. As the frequency of excitation is swept downward from well above the third and

the fourth natural frequencies, the third-mode and the fourth-mode responses become modulated
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Figure 4: Frequency-response curve of the fourth-mode when ab = 309mV: Experiment

and a growing contribution of the low-frequency first mode is observed; see the following files in

CD-ROM:

• ”mode3−4/mode3−1interaction.MOV”: showing the modulation of the third-mode by the

first mode. The corresponding frequency as well as the signal response are illustrated by

the generator and the oscilloscope.

• ”mode3−4/mode3−1birth.MOV”: showing clearly the birth of this third mode and its

modulation by the low-frequency first mode.

• ”mode3−4/mode4−Hopf.MOV”: illustrating the destabilization of the fourth-mode by a

Hopf bifurcation.

These observations are the signature of energy transfer between widely spaced modes. Visually

we can see the amplitude of the third-mode and the fourth-mode being modulated, along with

a large swaying (i.e. the first-response). Typical responses time traces are illustrated in Fig.5

(third-mode) and Fig.6 (fourth-mode).

For ab = 336mV and Ω = 67.95Hz, the modulation frequency of the third-mode and swaying

amplitude increase with time and the beam response eventually gets drawn to chaotic attractor.
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Figure 5: Response time trace for the modulated third-mode at Ω = 68Hz when ab = 336mV.
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Figure 6: Response time trace for the modulated fourth-mode at Ω = 130Hz when ab = 562mV.
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Figures 7(a) and 7(b) show the time trace of a transition to a chaotic motion and of a fully

developed chaotic motion, respectively.
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Figure 7: Response time trace for the third-mode at Ω = 67.95Hz when ab = 336mV.

The force-response curves of the third- and the fourth-mode are shown in Fig. 8 and Fig. 9. As

the excitation amplitude is increased, the amplitude of the beam’s response increases till reaching

a threshold where chaotic motion appears. To study the influence of the excitation amplitude

on the transfer of energy between widely spaced modes, we repeated the above experiments at

higher amplitudes of excitation.
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Figure 8: Force-response curve of the third-mode when Ω = 68Hz
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Figure 9: Frequency-response curve of the fourth-mode when Ω = 122.5Hz
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3.3.2 Out-of-plane mode

The first out-of-plane (i.e. in the plane perpendicular to the plane of excitation) flexural natural

frequencies of the beam were also observed from experiment and is found to be equal approxi-

mately to 103 Hz; see the following files in the CD-ROM:

• ”Out−of−plane/mode1−out−of−plane−a.MOV”,

• ”Out−of−plane/mode1−out−of−plane−b.MOV”.

They show the variation of amplitude of the first flexural out-of-plane mode on the oscilloscope.

The amplitude increases to a maximum and then decreases.

Other observations showed the interaction between the third-mode, the first in-plane flexural

mode and the first out-of-plane flexural mode, see the following files in CD-ROM:

• ”Out−of−plane/mode3−1−1out−of−plane−a.MOV”, showing the interaction between the

third mode and the first in-plane flexural mode,

• ”Out−of−plane/mode3−1−1out−of−plane−b.MOV”, illustrating the small vibrations of

the out-of-plane flexural mode in the presence of the third mode, view from top.

3.4 Third model with structural damping

3.4.1 Abstract

In this part we study the flexural vibration modes of a cantilevered beam governed by the

following nondimensional equation

v′′ − δv′

xx + vxxxx = 0, (12)

with the boundary conditions

v(0, t) = 0, vx(0, t) = 0, (13)

vxx(1, t) = 0, vxxx(1, t) = δv′

x(1, t) (14)

For positive δ we distinguish three regions:

• For 0 < δ < 2: All modes are complex. For small δ the shapes of the real part of the

complex modes are similar to the modes of the undamped classical cantilevered beam.

Using a least square fitting method we find that δ is proportional to the inverse of the

natural frequency ω.
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• For δ = 2: existence of one real mode and complex modes.

• For δ > 2: coexistence of complex modes and real modes.

3.4.2 Formulation of the problem

We adopt a linear constitutive relation [1] so that the shear force V is given by

V = EIuxxx − αutx (15)

where E, I and α are Young’s modulus, the moment of inertia of the cross section and viscoelastic

damping coefficient respectively. The damping force is proportional to the bending rate of the

beam (see Humar [3]). Thus the governing equation of motion is given by

mutt − αutxx + EIuxxxx = 0, (16)

with the boundary conditions

u(0, t) = 0, ux(0, t) = 0, (17)

uxx(L, t) = 0, EIuxxx(L, t) = αu̇x(L, t) (18)

Here u(x, t) is the transverse displacement of the cantilevered beam, m is a mass per unit length

and α is a damping coefficient expressed in [N.s].

Equation (16) is a one-dimensional version of the mathematical model for the linear elastic

systems with structural damping introduced by Chen and Russell in [4].

Writing the equations of motion (16-18) in non dimensional form leads to

v′′ − δv′

xx + vxxxx = 0, (19)

with the boundary conditions

v(0, t) = 0, vx(0, t) = 0, (20)

vxx(1, t) = 0, vxxx(1, t) = δv′

x(1, t) (21)

where

v =
u

L
, h =

√

EI

m
, δ =

α

mh
=

α√
mEI

τ = ht, ()′ =
d()

dτ
(22)

Equation (19) was studied by Zarubinskaya and van Horssen [5] with one boundary condition

given in π instead of 1 in our case. They showed numerically that dissipation is generated for all
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positive δ.

It can be shown that the energy E(t) given by

E(t) =
1

2

∫ 1

0

(v′2(x, τ) + v2
xx(x, τ))dx (23)

decreases for increasing times i.e.,

dE

dτ
= −δ

∫ 1

0

v
′2
x dx ≤ 0. (24)

Assume that the solution of equation (19) can be sought in the form

v(x, τ) = T (τ)X(x) (25)

Guided by the experimental observations and by the fourth boundary condition given in (21),

we take the time dependent solution of the form

T (τ) = exp(λτ), with λ =
X ′′′(1)

δX ′(1)
(26)

where λ is a complexe valued variable that can be written as λ = λr + iω, with λr and ω are

real. Physically, they reflect the exponential decreasing of the amplitude and the frequency of

vibration of natural modes, respectively.

The space dependent solution X(x) satisfies consequently the following boundary value problem

X ′′′′ − δλX ′′ + λ2X = 0, 0 < x < 1, (27)

X(0) = X ′(0) = X ′′(1) = 0, X ′′′(1) = δλX ′(1) (28)

Let us briefly collect a few facts about (27). First, it is a Hamiltonian dynamical system with

(constant) Hamiltonian ’energy’ given by

H = X ′X ′′′ − δλ

2
X ′2 +

λ

2
X2 − X ′′2

2
(29)

Second, the dynamical system is also reversible, that is (29) is invariant under

R : (X ′, X ′′′) → (−X ′,−X ′′′) (30)

The spectral problem corresponding to equation (27) is

k4 − δλk2 + λ2 = 0 (31)

The analysis of this characteristic equation leads to consider three cases: δ = 2, δ > 2 and

0 < δ < 2.
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1. for δ > 2

k2
1,2 =

δλ

2
± 1

2

√

λ2(δ2 − 4) (32)

the general solution of equation (27) can be written as

X(x) = C1 cosh (k1x) + C2 sinh (k1x) + C3 cosh (k2x) + C4 sinh (k2x) (33)

2. for δ = 2

k2 = λ (34)

the general solution of equation (27) can be written as

X(x) = (C1 + C2x) cosh (kx) + (C3 + C4x) sinh (kx) (35)

3. for δ < 2

k2
1,2 =

δλ

2
± i

2

√

λ2(4 − δ2) (36)

the general solution of equation (27) can be written as

X(x) = C1 cosh (k1x) + C2 sinh (k1x) + C3 cosh (k2x) + C4 sinh (k2x) (37)

In all these expressions, C1, C2, C3 and C4 are complex valued constants of integration. By

substituting the solution X(x) given in equations (33), (35) or (37) into the boundary conditions

(28), we obtain a system of four linear homogeneous equations for C1, C2, C3 and C4. To have a

nontrivial solution X(x), the determinant of the coefficient matrix has to be zero. This leads to

the following complex equations

1. for δ > 2

p2(1 + a4) − δλ(1 + a2) + sinh (p) sinh (pa)[a3p2 + ap2 − 2aδλ]

+ cosh (p) cosh (pa)[a2(λδ − 2p2) + λδ] = 0 (38)

where a = k2
1/λ and p2 = λ/a.

2. for δ = 2

k2 + 1 + 3 cosh2(k) = 0 (39)

28



3. for 0 < δ < 2

p2(1 + a4) − δλ(1 + a2) + sinh (p) sinh (pa)[a3p2 + ap2 − 2aδλ]

+ cosh (p) cosh (pa)[a2(λδ − 2p2) + δλ] = 0 (40)

where a = k2
1/λ and p2 = λ/a.

We have three unknowns λr, ω and δ, and two equations relating them: through the spectral

equation (31). This means that through the physical model we should have an additional equa-

tion.

This additional equation can be obtained through experiment by measuring either λr which is

the decaying of the amplitude due to the damping, or the frequency of the mode ω.

3.4.3 Application

In this section, we discuss the mode shapes for different values of the damping coefficient δ.

3.4.4 For δ = 2

For real λ i.e., ω = 0 the solution of equation (39) is a pure imaginary k = ±i1.1896165 and

consequently λ = −1.4151. The general solution (35) (mode shape) is a real function of x and it

is given by

X(x) = x cos(1.189616503x) − .8406070338 sin(1.189616503x)

− 3.805597616x sin(1.189616503x) (41)

which has a similar shape as the first undamped linear mode (see figure 10). This case can be

seen as a critical mode i.e., separating the vibrating and non-vibrating modes.

On the other hand, for complex λ i.e., λ = λr + iω (see table 4), the modes are complexes. In

figures 11-14 are shown the ten first complex modes corresponding to δ = 2 for increasing ω.
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Figure 10: Real mode shape corresponding to δ = 2

Modes ω λr

mode 1 5.611598842 -5.622187119

mode 2 23.20877682 -31.54474193

mode 3 66.02776524 -145.3742493

mode 4 89.97854232 -232.5161838

mode 5 115.1617249 -339.6314969

mode 6 141.3757272 -466.6580262

mode 7 168.4756217 -613.5561166

mode 8 196.3522015 -780.2987755

mode 9 224.9202213 -966.8667262

mode 10 254.1112900 -1173.245682

Table 4: Complex valued λ solutions of equation (35) for δ = 2
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Figure 11: a) Five first complex modes corresponding to δ = 2, the real parts (left) and imaginary parts (right)
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Figure 12: b) Five first complex modes corresponding to δ = 2, the real parts (left) and imaginary parts (right)

32



–0.1

–0.05

0

0.05

0.1

0.2 0.4 0.6 0.8 1x

–0.1

–0.05

0

0.05

0.1

0.2 0.4 0.6 0.8 1x

–0.1

–0.05

0

0.05

0.1

0.2 0.4 0.6 0.8 1x

–0.1

–0.05

0

0.05

0.1

0.2 0.4 0.6 0.8 1x

–0.1

–0.05

0

0.05

0.1

0.2 0.4 0.6 0.8 1x

–0.1

–0.05

0

0.05

0.1

0.2 0.4 0.6 0.8 1x

Figure 13: a) Sixth to tenth complex modes corresponding to δ = 2, real modes (left) and imaginary modes

(right)
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Modes λr

mode 1 −1.405789649

mode 2 −3795.6870874420743812

mode 3 −4093.6414717981212955

mode 4 −15476.141366293485278

mode 5 −16072.905424128655580

mode 6 −35042.54728040902431

mode 7 −35939.949149609889807

mode 8 −62494.777867278649130

mode 9 −63695.889569408146754

mode 10 −97832.782317529792018

Table 5: Real valued λ for δ = 2.01

3.4.5 For δ > 2

In this case we have found the coexistence between real modes (i.e., ω = 0) and complex modes.

For δ = 2.01

In Table 5 are shown the values of λ which are real i.e., corresponding to ω = 0. In this case the

mode shapes X(x) are found to be real functions. The ten first modes are shown in figures 15

for decreasing values of λ. It is worth noting that these modes are highly damped since |λr| are

very high.

The system has also complex valued λ given in table 6, and consequently complex modes shown

in figures 16 and 17.
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Figure 15: Real modes corresponding to δ = 2.01
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Figure 16: Five first complex modes corresponding to δ = 2.01: Real parts (left) and imaginary parts (right)
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Figure 17: Sixth to tenth complex modes corresponding to δ = 2.01: Real parts (left) and imaginary parts

(right)
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Modes ω λr

mode 1 5.616646605706798761192 -5.621921891814156528859

mode 2 23.0851474852 -31.6452365245

mode 3 43.0695665168 -78.6560686107

mode 4 64.6127480003 -146.123747181

mode 5 87.0516847702 -233.852977129

mode 6 109.900641289 -341.754364661

mode 7 132.755241192 -469.784731579

mode 8 155.244791352 -617.926503409

mode 9 177.002496630 -786.179823229

mode 10 197.641149548 -974.560279587

Table 6: Complex values of λ for δ = 2.01, solutions of equation (38)

For δ = 2.1

In table 7 are listed the real values of λ i.e., corresponding to ω = 0 and in figures 18 are shown

the corresponding first ten modes which are real.

In table 8 are given the nine first complex values of λ. For increasing ω the decreasing of λr is

not granted for all modes. See for instance modes 4 and 5 and modes 8 and 9. In figure 19 are

shown the shapes of the five first complex modes.

39



Modes λ

mode 1 -1.3272416057488207846

mode 2 -328.25996709762212773

mode 3 -475.29633384968554519

mode 4 -1504.8997008869650697

mode 5 -1696.3795933157434893

mode 6 -3379.6501627280319989

mode 7 -3667.0420853353194963

mode 8 -6012.5467814103897986

mode 9 -6594.6656321066948959

mode 10 -9637.5008377941180125

Table 7: Real valued λ corresponding to δ = 2.1

Modes ω λr

mode 1 5.6504874868488989230 -5.6276837035923778302

mode 2 21.8867308110 -32.5875919894

mode 3 37.5776682582 -81.9293074825

mode 4 47.8043585943 -249.445405638

mode 5 48.8052258966 -153.692217650

mode 6 80.2197665604 -598.752283941

mode 7 110.307798399 -770.298348044

mode 8 120.022814056 -1179.36751667

mode 9 125.032085349 -962.976427957

Table 8: Complex values of λ for δ = 2.1, solutions of equation (35)
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Figure 18: Real modes corresponding to δ = 2.1
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Figure 19: Five first complex modes corresponding to δ = 2.1: the real modes left column, the imaginary modes

right column
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Modes λ

mode 1 -.24786890568109528554

mode 2 -2.3168337612119401343

mode 3 -6.3522112439887708407

mode 4 -12.808510727593993108

mode 5 -23.102827352028054393

mode 6 -41.502304663470018043

mode 7 -55.475989863513051771

mode 8 -71.894167693810871866

mode 9 -89.777725995171986294

mode 10 -110.19584006612002298

Table 9: Real eigenvalues for δ = 10

For δ = 10

In table 9 are given the first ten real values of λ and in figure 20 are shown the first ten corre-

sponding real modes.
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Figure 20: Real Modes corresponding to δ = 10
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Modes ω λr

mode 1 5.544283396 -5.636062820

mode 2 24.35110466 -30.58606088

mode 3 48.42890583 -75.04550690

mode 4 78.08775030 -138.4062280

mode 5 113.566580014 -220.495936464

mode 6 155.0357696 -321.2839952

mode 7 202.5904977 -440.7812792

mode 8 256.2767357 -579.0042969

mode 9 316.114463149 -735.965257536

mode 10 382.1116256 -911.6713836

Table 10: Complex values of λ for δ = 1.9, solutions of equation (40)

3.4.6 For 0 < δ < 2

It is found that in this case all values of λ are complex and the modes are all complex.

For δ = 1.9

In table 10 are shown the complex values of λ, and in figures 21 and 22 are shown the ten first

complex modes.

For δ = 0.1

In table 11 are shown the complex values of λ, and in figures 23 are shown the five first complex

modes. It is worth noting that the real parts are similar to the undamped modes. This is the

case for all real modes corresponding to small δ.

3.4.7 Discussion

First, let us take, for instance λr = −0.6. The numerical values of ω and δ are given in table 12.

Fitting these values one finds δ = 0.8808ω−0.9915. In figure 24 we show a comparison between

the seven first normalized modes corresponding to the undamped model δ = 0 and the real part

of the complex modes given in (37) for λr = −0.6. It is clear that the first mode is the most

influenced by the constant decaying λr. The higher modes are almost not influenced.
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Figure 21: First five complex modes corresponding to δ = 1.9: real parts (left) and imaginary part (right)
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Figure 22: Sixth to tenth complex modes corresponding to δ = 1.9: real parts (left) and imaginary part (right)
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Figure 23: First five complex modes corresponding to δ = 0.1: real parts (left) and imaginary part (right)
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Modes ω λr

mode 1 3.5104962969451496 -.23262744814900117

mode 2 21.982485544604480 -1.6231856047759467

mode 3 61.577348012506420 -3.8684696364915563

mode 4 120.69295882921888 -7.1500287987983971

mode 5 199.535913311 -11.4130606771

mode 6 298.092676306 -16.6635006740

mode 7 416.363993716 -22.9008703963

mode 8 554.349828903 -30.1252024520

mode 9 712.050183503 -38.3364948397

mode 10 889.4650576 -47.53474767

Table 11: Complex values of λ for δ = 0.1, solutions of equation (40)

Now we focus our attention on the first mode, we find that the best fit is given by δ ≈ −0.4λr +

0.013; see Fig.14. For the second mode, we find δ ≈ −0.061λr, see Fig.26. For the third mode,

we find δ ≈ −0.025λr, see Fig.27. Thus, δ(λr) is a linear function which is decreasing with the

order of the mode for increasing ω.

In tables 13 - 21, we show for fixed decreasing values of λr the natural frequencies of the ten

first flexural modes and the corresponding values of δ. It is obvious that ωn is decreasing with

increasing δ and consequently increasing |λr|. For different λr ≤ 1, a least square fit method

leads to the following relation

δ ≈ 0.01357 − 1.42475λr

ω
(42)

49



0

0.5

1

1.5

2

0.2 0.4 0.6 0.8 1

X

–2

–1.5

–1

–0.5

0

0.5

1

1.5

0.2 0.4 0.6 0.8 1
X

–1

–0.5

0

0.5

1

1.5

2

0.2 0.4 0.6 0.8 1

X

–2

–1.5

–1

–0.5

0

0.5

1

1.5

0.2 0.4 0.6 0.8 1
X

–1

–0.5

0

0.5

1

1.5

2

0.2 0.4 0.6 0.8 1

X

–2

–1.5

–1

–0.5

0

0.5

1

1.5

0.2 0.4 0.6 0.8 1
X

–1

–0.5

0

0.5

1

1.5

2

0.2 0.4 0.6 0.8 1

X

Figure 24: Comparison on the first seven modes corresponding to δ = 0 in dots, and the real normalized modes

corresponding to (37) in continuous line
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Modes ω δ ω for δ=0

mode 1 3.4792779830753535 0.25642247474261911 3.5160152685001511

mode 2 22.027386303470494 0.037009955897800919 22.034491564666770

mode 3 61.694333032512817 0.015523816467832633 61.697214413549101

mode 4 120.90044569648437 0.0083973314686887331 120.90191605230572

mode 5 199.85863636977717 0.0052600757189864517 199.85953011680345

mode 6 298.55493130963915 0.0036023780172085773 298.55553096773010

mode 7 416.99035610961929 0.0026210509726806063 416.99078605660547

mode 8 555.16492432029990 0.0019923982626406579 555.16524755576268

mode 9 713.07866616522019 0.001565586217957760 713.07891797897610

mode 10 890.73159551578611 0.001262596901892794 ....

Table 12: The values of ω and δ for λr = −0.6 and the values of ω for δ = 0 (λr = 0)
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Figure 25: δ versus λr for the first mode

51



−2 −1.8 −1.6 −1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2 0
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

λ
r

δ

 
δ = − 0.061573 λ

r
 + 5.2102e−005

Figure 26: δ versus λr for the second mode
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Figure 27: δ versus λr for the third mode
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Modes ω δ

mode 1 3.5149955111983954 0.043023161526641025

mode 2 22.0342941991 0.00616949309073

mode 3 61.697134376604811 0.0025873576788871834

mode 4 120.90187520929713 0.0013995618303243444

mode 5 199.85950529054561 0.00087668060061278631

mode 6 298.55551431057595 0.00060039669068738750

mode 7 416.99077411363928 0.00043684194647919045

mode 8 555.16523857700223 0.00033206642253284966

mode 9 713.07891098415085 0.00026093105598086692

mode 10 890.73179159601005 0.00021043282628443438

Table 13: The values of ω and δ for λr = −0.1. The best fit is given by δ = 0.1467 ω−0.9787

Modes ω δ

mode 1 3.5119359873280870 0.085997403126576179

mode 2 22.0337021014 0.0123387861551

mode 3 61.696894265285829 0.0051747059412512763

mode 4 120.90175268019979 0.0027991225317304191

mode 5 199.85943081175551 0.0017533609759514461

mode 6 298.55546433910835 0.0012007933206061110

mode 7 416.99073828473846 0.00087368387278144978

mode 8 555.16521164072007 0.00066413283727838467

mode 9 713.07888999967451 0.00052186210859238803

mode 10 890.73177478913534 0.00042086565097419152

Table 14: The values of ω and δ for λr = −0.2. The best fit is given by δ = 0.2929 ω−0.9783
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Modes ω δ

mode 1 3.5068359448803793 0.12887372675364248

mode 2 22.0327152691 0.0185076791414

mode 3 61.696494078133809 0.0077620353700838022

mode 4 120.90154846479909 0.0041986809752799765

mode 5 199.85930668038329 0.0026300409007401047

mode 6 298.55538105331179 0.0018011898289872988

mode 7 416.99067856989811 0.0013105257587298514

mode 8 555.16516674691419 0.00099619923644930495

mode 9 713.07885502554524 0.00078279315446519888

mode 10 890.73174677767686 0.00063129847247458277

Table 15: The values of ω and δ for λr = −0.3. The best fit is given by δ = 0.4379 ω−0.9777

Modes ω δ

mode 1 3.4996941434346181 0.17160298026892849

mode 2 22.031333696943298 0.024675971923751508

mode 3 61.695933812718198 0.010349336547405532

mode 4 120.90126256273736 0.0055982360319948649

mode 5 199.85913289634590 0.0035067201496995341

mode 6 298.55526445316059 0.0024015861550616194

mode 7 416.99059496910762 0.0017473675841473053

mode 8 555.16510389557910 0.0013282656122582272

mode 9 713.07880606176193 0.0010437241902299456

mode 10 890.73170756163352 0.00084173128919094434

Table 16: The values of ω and δ for λr = −0.4. The best fit is given by δ = 0.586 ω−0.9829
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Modes ω δ

mode 1 3.4905088734517290 0.21413578580447283

mode 2 22.029557377944537 0.030843464290072054

mode 3 61.695213465636195 0.012936600053780950

mode 4 120.90089497300000 0.0069977865730050435

mode 5 199.85890945952701 0.0043833984975453820

mode 6 298.55511453861845 0.0030019822380590177

mode 7 416.99048748235382 0.0021842093288566721

mode 8 555.16502308671027 0.0016603319569178247

mode 9 713.07874310832139 0.0013046552125172582

mode 10 890.73165714100383 0.0010521640995285707

Table 17: The values of ω and δ for λr = −0.5. The best fit is given by δ = 0.7355 ω−0.9891

Modes ω δ

mode 1 3.4792779830753535 0.25642247474261911

mode 2 22.027386303470494 0.037009955897800919

mode 3 61.694333032512817 0.015523816467832633

mode 4 120.90044569648437 0.0083973314686887331

mode 5 199.85863636977717 0.0052600757189864517

mode 6 298.55493130963915 0.0036023780172085773

mode 7 416.99035610961929 0.0026210509726806063

mode 8 555.16492432029990 0.0019923982626406579

mode 9 713.07866616522019 0.001565586217957760

mode 10 890.73159551578611 0.001262596901892794

Table 18: The values of ω and δ for λr = −0.6. The best fit is given by δ = 0.8808 ω−0.9815
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Modes ω δ

mode 1 3.4659989121980860 0.29841303171761134

mode 2 22.024820462867129 0.043175246246465868

mode 3 61.693292508000836 0.018110976365755641

mode 4 120.89991473086235 0.0097968695903321515

mode 5 199.85831362691361 0.0061367515887230485

mode 6 298.55471476616582 0.0042027734317382131

mode 7 416.99020085088270 0.00305789249544157

mode 8 555.16480759633849 0.0023244645216393109

mode 9 713.07857523245399 0.0018265172031820600

mode 10 890.731522687 0.00147302969460

Table 19: The values of ω and δ for λr = −0.7. The best fit is given by δ = 1.023 ω−0.9929

Modes ω δ

mode 1 3.4506687334331566 0.34005705020901389

mode 2 22.0218598437 0.0493391346449

mode 3 61.692091885780834 0.020698070320831428

mode 4 120.89930207571756 0.01119639980842992

mode 5 199.85794123072034 0.0070134258814452454

mode 6 298.55446490813146 0.0048031684208744760

mode 7 416.99002170611901 0.0034947338769617702

mode 8 555.16467291481561 0.002656530726126241

mode 9 713.07847031001750 0.0020874481648207544

mode 10 890.73143865157680 0.0016834624763222261

Table 20: The values of ω and δ for λr = −0.8. The best fit is given by δ = 1.16 ω−0.9919
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Modes ω δ

mode 1 3.4332841994785980 0.38130370248726898

mode 2 22.018504431461134 0.055501420182576233

mode 3 61.690731158561196 0.023285088902941735

mode 4 120.89860772997685 0.012595920993504853

mode 5 199.85751918094823 0.0078900983718311748

mode 6 298.55418173545866 0.0054035629238423056

mode 7 416.98981867529918 0.0039315750970631078

mode 8 555.16452027571862 0.0029885968683138415

mode 9 713.07835139790485 0.0023483790995044142

mode 10 890.73134341257960 0.0018938952451980353

Table 21: The values of ω and δ for λr = −0.9. The best fit is given by δ = 1.292ω−0.9904

4 Theoretical modelling

4.1 Partial differential equations modelling

In this subsection, we present the equations of motion and boundary conditions governing the

nonlinear vibrations of isotropic and inextensible cantilever beams. A variational approach based

on the extended Hamilton principle is used [see Crespo da Silva, Non-linear flexural-flexural-

torsional-extensional dynamics of beams. I: Formulation, International Journal of Solids and

Structures 24, 1225-1234, 1988].

In nonlinear elastic beams, large deformations give rise to geometric nonlinearities due to non-

linear curvature and/or midplane stretching, leading to nonlinear strain-displacement relations.

We use the Euler-Bernoulli beam theory to model the beam, and accordingly neglect the effects

of warping and shear deformation. The usually small Poisson effect is also neglected in our case.

Hence, knowing the deformation of the neutral axis enables the determination of the deformation

of all points on the beam. Neglecting the out-of plane motions, the beam’s neutral axis being

inextensional leads to the following constraint equation

(1 + v′)2 + u′2 = 1 (43)

which gives up to the second order equation

v′ ≈ −1

2
u′2 (44)
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where u(s, t) is the transverse displacement, v(s, t) is the longitudinal displacement and the prime

is the derivative with respect to the arclength s.

Then, substituting the inextensionality condition, given by (44), and applying the boundary

condition u(0, t) = 0, leads to

v(s, t) = −1

2

∫ s

0

u′2ds (45)

The no-transverse-shear assumption leads to the fact that the cross sections rotations are due to

the bending alone. Assuming the rotatory inertia to be negligible compared to the translational

inertia, in what follows we develop a nonlinear partial-differential equation of motion describing

the flexural motion of an inextensional beam.

The Lagrangian L of motion is defined as

L = T − V (46)

where T is the kinetic energy and V the potential energy. In our case, we are interested to the

transverse in-plane motions of the beam. Thus the total kinetic energy is given by

T =
m

2

∫ L

0

[

u̇2 + v̇2
]

ds (47)

where m is the mass per unit length. Inserting the inextensibility condition (45) into the kinetic

energy expression (47) gives

T =
m

2

∫ L

0

[

u̇2 +
1

4

(

∂

∂t

∫ s

0

u′2dσ

)2
]

ds (48)

The potential energy for the bending vibrations of inextensional beams is given by

V =
EI

2

∫ L

0

κ2(s, t)ds (49)

where E is the Young’s modulus, I is the moment of inertia, EI is the bending stiffness and κ

is the change in curvature due to the bending, which is expressed as

κ =
u′′

√

(1 − u′2)
(50)

The Taylor expansion of κ up to the second order is given by

κ2 =
u′′2

1 − u′2
≈ u′′2 + u′′2u′2 (51)
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Thus the potential energy is approximated by

V =
EI

2

∫ L

0

(

u′′2 + u′′2u′2
)

ds (52)

Hamilton’s principle states that, of all the possible paths satisfying the prescribed initial and

final configurations, the true path minimizes the following functional

δI =

∫ t2

t1

[δ(L) + δ(Wnc)] dt = 0 (53)

where t1 and t2 denote the initial and final time instants, and Wnc the work done by non-

conservative forces such as damping, external forces and moments. In our case the expression

for δWnc is

δWnc =

∫ L

0

(mab cos (Ωt) − cu̇) δu ds (54)

where ab is the acceleration of the supported end of the beam, Ω is the excitation frequency and

c is the linear damping coefficient. Here the damping term is taken into account resorting to the

phenomenological linear effect of the dissipation forces.

Using the Hamilton’s principle (53), we find the following equation of motion describing the

in-plane transverse displacement u(s, t)

mü + cu̇ + EIuiv = −EI[u′(u′u′′)′]′ + mab cos (Ωt)

− m

2

[

u′

∫ s

L

∂2

∂t2
(

∫ s

0

u′2ds)ds

]′

(55)

and the boundary conditions are

u(0, t) = 0, u′(0, t) = 0 (56)

u′′(L, t) = 0, u′′′(L, t) = 0 (57)

In the governing equation of motion (55) there are two type of nonlinearities: geometric and

inertial. The geometric nonlinearity [u′(u′u′′)′]′ is due to the nonlinear change in curvature (50)

and the inertial nonlinearity
[

u′
∫ s

l
∂2

∂t2
(
∫ s

0
u′2ds)ds

]′

is due to the inextensionality condition (45).

For higher modes, the inertia nonlinearity is the dominant nonlinear term, whereas for the first

mode, the geometric nonlinearity is the dominant nonlinear term.

For more details, see [Ph.D. Pramod Malatkar, Virginia Tech. 2003].
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4.2 Single-mode response

The steel beam used in the experiment constitutes a lightly damped, weakly nonlinear system,

and none of its modes is involved in an internal resonance with other modes. We, therefore,

assume that the response of the beam consists essentially of one undamped linear mode whose

natural frequency is close to the excitation frequency Ω. We refer to this mode as the nth mode

whose natural frequency is ωn. Other modes, not being directly or indirectly excited, will decay

to zero with time due to the presence of damping [A. H. Nayfeh and D. T. Mook, Perturba-

tion Methods, Wiley, New York (1979) and Ali H. Nayfeh, Nonlinear Interactions, Analytical,

Computational and Experimental Methods, Wiley, New York, 2000].

The method of multiple scales (A.H. Nayfeh and D.T. Mook, 1979) is used to derive a first-

order uniform expansion for the beam response governed by equations (55)-(57) under primary

resonance.

Thus we scale the damping coefficient c and the forcing coefficient ab appearing in Eq.(55) in

terms of a small dimensionless parameter ε(≤ 1) as follows

cu

2m
= ζωn = ε2µ (58)

ab = ǫ3f̂ (59)

where ζ is the dimensionless linear viscous damping factor corresponding to the nth mode. Also,

we let

u(s, t; ε) = εu1(s, T0, T2) + ε3u3(s, T0, T2) + ... (60)

where the Tn = εnt represent different time scales, T0 being the fast-time scale and T2 the

slow-time scale. The derivatives with respect to t now take the form

d

dt
= D0 + ε D1 + ε2D2 + ... (61)

d2

dt2
= D0

2 + 2εD0D1 + ε2(2 D0D2 + D1
2) + ... (62)

where Dn = ∂/∂Tn. For the natural frequencies, we use the experimental values instead of the

theoretical ones. The model equation becomes after substituting Eqs.(58)-(59) into Eq.(55)

ü + 2ε2µu̇ +
EI

m

[

uiv + [u′(u′u′′)′]′
]

= ε3f̂ cos (Ωt)

− 1

2

{

u′

∫ s

L

[

∂2

∂t2

∫ ξ

0

u
′2dη

]

dξ

}

′

(63)

Inserting Eqs. (60)-(62) into Eq. (63) and equating coefficients of equal powers of ε, we obtain
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Order O(ε) :

D2
0u1 +

EI

m
uiv

0 = 0 (64)

u1 = 0 and u
′

1 = 0 at s = 0 (65)

u
′′

1 = 0 and u
′′′

1 = 0 at s = L (66)

Order O(ε3) :

D2
0u3 +

EI

m
uiv

3 = −D0D2u1 − 2µD0u1 −
EI

m
[u

′

1(u
′

1u
′′

1)
′

]
′

− 1

2

[

u
′

1

∫ s

L

D2
0

(
∫ s

0

u
′2
1 ds

)

ds

]′

+ f̂ cos(ΩT0) (67)

u3 = 0 and u
′

3 = 0 at s=0 (68)

u
′′

3 = 0 and u
′′′

3 = 0 at s = L (69)

Since we are seeking a single-mode response solution, the solution of the first order problem

associated with Eqs. (64)-(66) is taken as

u1(s, T0, T2) = (A(T2)e
iωnT0 + Ā(T2)e

−iωnT0)Φn(s) (70)

where ωn = r2
n

√

EI
ml4

, rn is the nth root of the characteristic equation 1 + cos(r)cosh(r) = 0, and

Φ(s) denotes the normalized shape of the nth undamped linear vibration mode, which is given

by the following expression

Φn(s) =
1√
L

(

cosh
rns

L
− cos

rns

L
+

cos rn + cosh rn

sin rn + sinh rn

(sin
rns

L
− sinh

rns

L
)

)

(71)

Substituting Eq. (70) into Eq. (67) yields

D2
0u3 +

EI

m
uiv

3 = −2iωnΦnD2AeiωnT0 − 2iωnΦnAeiωnT0 +
1

2
f̂ eiΩT0

− EI

m
[Φ

′

n(Φ
′

nΦ
′′

n)′]
′

(A3e3iωnT0 + 3A2ĀeiωnT0)

+ 2ω2
n

(

Φ
′

n

∫ s

L

∫ s

0

Φ
′2
n dsds

)′

(A3e3iωnT0 + A2ĀeiωnT0) + cc (72)

Here we restrict our discussion to the case of primary resonance of the nth mode i.e., Ω =

ωn + ε2σ, where ε2σ is measuring the deviation from the exact primary resonance. Since the
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homogeneous problem associated with Eq (72) has nontrivial solutions, the nonhomogeneous

problem has a solution only if the right-hand side of Eq.(72) is orthogonal to every solution

of the adjoint homogeneous problem [Ali H. Nayfeh and P. Frank Pai, Linear and Nonlinear

Structural Mechanics, Wiley-Interscience, 2004 ]. Therefore, demanding that the right-hand side

of Eq. (72) be orthogonal to Φn(s) exp(−iωnT0), we obtain the following solvability condition

−2iωn(D2A + µA) − 2αA2Ā +
1

2
feiσT2 = 0 (73)

where

f = f̂

∫ L

0

Φn(s)ds

α =
3EI

m

∫ L

0

Φ
′

n(s)2Φ
′′

n(s)2ds − ω2
n

∫ L

0

(
∫ s

0

Φ
′

n(s)2ds

)2

ds (74)

The first term in the expression of α is due to the contribution of the geometric nonlinearity which

is hardening. The second term is due to the inertial nonlinearity which is softening. The effect

of inertial nonlinearities is increasing with the increase of the order n of the mode. Substituting

the polar form

A =
1

2
aei(σT2−γ) (75)

into the solvability condition (73), and separating real and imaginary parts, we obtain the fol-

lowing autonomous modulation equations of the amplitude a and the phase γ

a
′

= −µa +
f

2ωn

sin γ (76)

aγ
′

= σa − α

4ωn

a3 +
f

2ωn

cos γ (77)

where the prime indicates differentiation with respect to T2. We set the right-hand sides of Eqs.

(76) and (77) equal to zero, which gives the following two equations that will be used to obtain

the frequency-response and force-response diagrams, respectively:

σ∓ =
α

4ωn

a2 ∓
√

f 2

4ω2a2
− µ2 (78)

f = 2ωna

√

µ2 +

(

σ − α

4ωn

a2

)2

(79)

The beam response is given by

u(s, t; ε) = εa(t) cos(ω − γ)Φn(s) + ... (80)
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Figure 28: Frequency-response curve of the third-mode using equation (78) when ab = 100m/s2.
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Figure 29: Theoretically obtained third mode force-response curve using equation (79) for Ω = 68Hz.
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In figure 28, the softening character of the nonlinearities is shown near the third mode. This

effect is also found experimentally see Fig.3.

In figure 29, the force response curve of the third mode given by equation (79) for Ω = 68Hz is

shown. Nonlinear effects are present: coexistence of three solutions and hysteresis phenomenon.

The same analysis can be done for all the other modes. Future works will focus on the identifi-

cation of nonlinear parameters such as damping and stiffness through experiment and theory.

4.3 Multi-modes response

In order to investigate the experimentally observed modal interactions (see section 3.3), the

equations of motion (55)-(57) are non-dimensionalized by applying the following scalings:

s∗ =
s

L
, u∗ =

u

L
, t∗ = ωnt,

µ =
cL2

r2
n

√
mEI

, F =
mabL

3

EIr4
n

(81)

Here we have used the length L of the beam as the characteristic length and the inverse of the

nth natural frequency ωn = r2
n

√

EI/mL4 as the characteristic time. The rn is the nth root of

the characteristic equation 1 + cos (r)cosh(r) = 0. Then, in nondimensional form, the governing

equation and boundary conditions (55)-(57) become after dropping the stars,

ü + µu̇ +
1

r4
n

uiv = F cos (Ωt) − 1

r4
n

[u′(u′u′′)′]′

− 1

2

{

u′

∫ s

1

[
∂2

∂t2

∫ ξ

0

u′2dη]dξ

}′

(82)

u = 0 and u′ = 0 at s = 0 (83)

u′′ = 0 and u′′′ = 0 at s = 1 (84)

Applying the Galerkin method to equation (82) after expanding the response in terms of a series

of the normalized undamped linear mode shapes φn(s), leads to the following system of N ODEs

ün + µnu̇n + ω2
nun = fn cos (Ωt) +

∑

i

gniui +
∑

i,j,k

Λnijkuiujuk (85)

+
∑

i,j,k

Γnijkuk(üiuj + 2u̇iu̇j + uiüj), n = 1, 2, ..., N

where

Λnijk =
1

r4
n

∫ 1

0

φ′

nφ′

i(φ
′′

jφ
′′

k + φ′

jφ
′′′

k )ds (86)

Γnijk = −1

2

∫ 1

0

(

∫ s

0

φ′

nφ′

kds)(

∫ s

0

φ′

iφ
′

jds)ds (87)

64



are the coefficients of the cubic geometric and inertia nonlinearity terms, respectively, and

µn =

∫ 1

0

µφ2
nds, fn =

∫ 1

0

Fφnds,
∑

i,j,k

=
∑

i

∑

j

∑

k

(88)

In this section we consider the transfer of energy between the third mode and the first one.

Thus, the third natural frequency ω3 is used as a characteristic time. We retain the first four

modes in the expression of u(s, t); that is, N = 4. Since the resulting system of ODEs is stiff,

as the first mode evolves on a slow scale while the third and fourth modes evolve on a fast

scale, the Gear algorithm is used for numerical resolution. The resulting motion is expressed as

u(s, t) =
∑4

i=1 ui(t)φi(s).
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Figure 30: Displacement time trace of Eq. (85) for ab = 0.8 and Ω = 0.936.

In Fig. 30 is shown a coupled motion including the third and the first modes. In Fig. 31 is

shown an apparently chaotic motion.

The same procedure can be used to study the transfer of energy from the fourth mode.

Some future perspectives of this research are

1. the study of the coupled system of ODEs (85) using perturbation methods in order to have

an insight on possible dynamics and their regions of existence in the space of parameters,

2. the formulation of a theoretical model taking into account the coupled motion of the

in-plane and out-of-plane flexural modes observed experimentally in the subsection 3.3.2,
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Figure 31: Displacement time trace of Eq. (85) for ab = 0.98 and Ω = 1.4.

5 Rapid forcing of elastic structures and control with

time delay

5.1 Effect of rapid forcing and time delay on the dynamics of an

elastic beam

Consider a controlled simply-supported beam subjected to an axial high-frequency excitation

having the form aΩ2cos(Ωt) where a is a non-dimensional amplitude of excitation and Ω is the

excitation frequency (see Fig. 32). The control consists of a proportional position feedback with

a time delay. The equation of motion governing small transverse deflections w(x, t) of the beam

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 λw(t-τd, x)   

Beam a Ω2 cos(Ω t) 
w 

x 

Figure 32: representation of the beam
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can be written in the dimensionless form as

ẅ +
η

π2
ẇ′′′′ +

1

π4
w′′′′ + λw(x, τ − τd) = w′′aΩ2cos(Ωτ) (89)

with the boundary conditions

w = 0 and w′′ = 0 at x = 0 (90a)

w = 0 and w′ = 0 at x = 1 (90b)

where η is the internal damping, λ and τd represent the gain and time delay, a and Ω denote

the amplitude and frequency of the fast excitation, and τ = ω1t is the dimensionless time.

The characteristic frequency corresponding to the first natural frequency of the structure is

ω1 = (π
l
)2

√

EI
m

, where l, EI and m are the length, the constant bending stiffness and the mass

of beam, respectively. The transverse deflection w(x, τ) can be represented as

w(x, τ) =

N
∑

k=1

wk(τ)sin(kπx) (91)

The equation of motion for the desired number of modes can be derived by substituting Eq. (91)

into Eq. (89) and by performing the Galerkin’s method. This yields the set of equations

ẅk + ηkẇk + k4wk + λwk(τ − τd) = wkakΩ
2cos(Ωτ) (92)

where ηk = η(k2π)2 and Λkmnl = (mπ2)2nl
(

∫ 1

0
sin(kπx) sin(mπx)dx

) (

∫ 1

0
cos(nπx) cos(lπx)dx

)

are the kth internal damping and the coefficient of the modal interaction, respectively, and

ak = (kπ)2a.

We apply the method of direct partition of motion (DPM) [8] to separate between the slow and

fast dynamics of the individual oscillation modes. This provides the main autonomous equation

governing the slow motion of the considered mode. We introduce two time scales: a fast time

T0 = Ωτ = ǫ−1τ and a slow time T1 = τ , and we seek the solution wk(T0, T1) in the uniformly

valid expansion to the order ǫ2 having the form

wk(T0, T1) = zk(T1) + ǫφ1k(T0, T1) + ǫ2φ2k(T0, T1) + O(ǫ3) (93)

The time derivatives is transformed according to d/dτ = ǫ−1D0 + D1 and d2/dτ 2 = ǫ−2D2
0 +

2ǫ−1D0D1 + D2
1 where Dj

i ≡ ∂j/∂T j
i . Assume that the coefficient akΩ is the order ǫ0. The first

term of the expansion, zk(T1), describes the slow main motion of the considered mode, whereas

the φ-terms stand for small overlays of fast motion. The fast component ǫφik is considered to be
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small compared to the slow oscillation. Using the DPM technique we obtain the following main

equation governing the slow components zk(T1) of wk(T0, T1)

D2
1zk + ηkD1zk +

(

k4 +
(akΩ)2

2

)

zk + λzk(T1 − τd) = 0 (94)

The natural frequencies of the slow motion for the case of undamped undelayed oscillations is [6]

ωk = k2

√

1 + π4
(aΩ)2

2
(95)

5.1.1 Modal analysis and stability chart

The linear equation corresponding to Eq. (94) reads

z̈k + ηkżk + ω2
kz1 + λzk(T1 − τd) = 0 (96)

The corresponding transcendental characteristic equation is given by

s2 + ηks + ω2
k + λe−τds = 0 (97)

This equation possesses infinitely many finite roots for λ 6= 0 and τd 6= 0. To achieve stability,

two dominant roots of Eq. (97) should be placed on the imaginary axis at the desired resonant

frequency, while other roots remain in the stable left-half of the complex plane. The imaginary

characteristic roots are s = ±iωc, where ωc is the resonance frequency and i =
√
−1. The sub-

script c implies the crossing of the root loci on the imaginary axis. Substituting s = ±iωc into

Eq. (97) and solving for the control parameters λc and τdc yields

λc =
√

((ω2
k − ω2

c )
2 + (ηkωc)2) (98)

and

τdc =
1

ωc

{

arctan

[

ηkωc

ω2
k − ω2

c

]

+ 2(ℓ − 1)π

}

, ℓ = 1, 2, 3... (99)

where ℓ corresponds to the ℓth branch.

The natural undelayed frequencies, Eq. (95), and the natural delayed frequencies ωck± =
√

k4(1 + π4 (aΩ)2

2
) ± λ2 of the slow motion are shown in Fig. 33 for the first three modes versus

fast excitation force intensity. The critical value of the feedback gain must satisfy the condition

λ ≤
√

k4(1 + π4 (aΩ)2

2
) for each kth mode. This figure shows the influence of the time delay on

the natural frequencies. It can be seen that each natural frequency spectrum is splited into two

branches which come closer to the undelayed natural spectrum (dashed line) for large excitation
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force intensity. The splitting is more visible for the low frequencies. This result suggests that the

delayed beam may have, for the same excitation, two possible harmonic vibrations. Moreover,

by increasing the gain λ, the gap between the two splited branches increases (Fig. 33b).
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Figure 33: The first three undelayed natural frequencies (dashed line) and the corresponding

delayed frequencies (solid line) vs fast excitation force intensity; (a) λ = 0.8 and (b) λ = 1.24.

The stability chart is presented in Fig. 34a for fixed η1 = 0.067, a1 = 0.02 and Ω = 100. The

dashed region corresponds to the stability domain of the trivial equilibrium of the mode beam.

0 2 4 6 8 10 12 14
0

0.5

1

1.5

2

2.5

Time delay, τ
dc

F
e

e
d

b
a

c
k
 g

a
in

, 
λ

c

• S 

• U 

(a) 

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

Time delay, τ
dc

F
e

e
d

b
a

c
k
 g

a
in

, 
λ

c

Ω=50 

Ω=100 

Ω=150 

(b) 

Figure 34: (a) Stability chart of the trivial solution of Eq. (96); η1 = 0.067, a1 = 0.02. Ω = 100.

(b) Effect of varying Ω on the stability chart.

In Fig. 34b, we show the effect of the high-frequency excitation Ω on the stability chart. As

a result, the stability domain increases, the lobes shift right and the peaks maxima increase.

Finally, Fig. 35 illustrates numerical time traces integration of Eq. (96) using dde23 [9] of the

slow component z1(τ) for the two operating points S and U selected in the stable and unstable

zones in Fig. 34, respectively.

Results show that a fast harmonic excitation can increase and shift the stability domain of the

trivial equilibrium (Fig. 34). It was also shown that the delay can cause the natural frequency

spectrum to split into two branches offering the possibility for the system to have, for the same
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Figure 35: The time trace of slow component z1(τ) response corresponding to points S and U in

Fig. 34; (a) λc = 0.5, τdc = 2.4 and (b) λc = 1, τdc = 6.6.

excitation, two harmonic motions (Fig. 33). The gap between the two branches increases by

increasing the amplitude of the delay.

5.2 Rapid forcing in a delayed self excited system

5.2.1 Partition of motion and averaging

Vibrations of pendulum with time delay subjected to a horizontal parametric forcing and to a

self-excitation can be described in non-dimensional form by the following equation

d2x

dt2
− (α − βx2)

dx

dt
+ sin x = aΩ2 cos x cos Ωt + λx(t − T ) (100)

where the parameters α and β are assumed to be small, a is the excitation amplitude, Ω is the

parametric excitation frequency, and the parameters λ and T are the amplitude of the delay

and the delay period, respectively. Eq. (100) has relevance to regenerative effect in high-speed

milling.

We focus the analysis on small vibrations around the origin by expanding in Taylor’s series up

to the third-order terms sinx ≃ x− δx3 and cosx ≃ 1− γx2 where the coefficients δ = 1/6 and

γ = 1/2. Eq. (100) becomes

d2x

dt2
− (α − βx2)

dx

dt
+ (x − δx3) = aΩ2(1 − γx2) cos Ωt + λ x(t − T ) (101)

To implement the method of DPM, we introduce two different time-scales: a fast time T0 ≡ Ωt

and a slow time T1 ≡ t, and we split up x(t) into a slow part z(T1) and a fast part ǫϕ(T0, T1) as

follows
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x(t) = z(T1) + ǫϕ(T0, T1) (102)

and

x(t − T ) = z(T1 − T ) + ǫϕ(T0 − ΩT, T1 − T ) (103)

where z describes slow main motions at time-scale of oscillations of the pendulum, and ǫϕ stands

for an overlay of the fast motions. In Eqs. (102) and (103), ǫ indicates that ǫϕ is small compared

to z. Since Ω is considered as a large parameter we choose ǫ ≡ Ω−1, for convenience. The fast

part ǫϕ and its derivatives are assumed to have a zero T0-average, so that < x(t) >= z(T1) and

< x(t − T ) >= z(T1 − T ) where <>≡ 1
2π

∫ 2π

0
() dT0 defines time-averaging operator over one

period of the fast excitation with the slow time T1 fixed. Inserting (102) and (103) into (101)

and introducing Dj
i ≡ ∂j

∂jTi
yields

D2
1z + ǫD2

1ϕ + 2D0D1ϕ − α(D1z + ǫD1ϕ + D0ϕ) + β(z2D1z + ǫz2D1ϕ

+ z2D0ϕ + 2ǫzϕD1z + 2ǫzϕD0ϕ) + z + ǫϕ − δ(z3 + 3ǫz2ϕ)

= ǫ−1(aΩ)z cosT0 − ǫ−1(aΩ)γz2 cosT0 − 2(aΩ)γzϕ cosT0 − ǫ(aΩ)γϕ2 cosT0

+ λz(T1 − T ) + ǫλϕ(T0 − ΩT, T1 − T ) (104)

Averaging (104) leads to

D2
1z − αD1z + βz2D1z + z − δz3 = −2(aΩ)γz < ϕ cosT0 >

− ǫ(aΩ)γ < ϕ2cosT0 > +λz(T1 − T ) (105)

Subtracting (105) from (104), an approximate expression for ǫϕ is obtained by considering only

the dominant terms of order ǫ−1 as

D2
0ϕ = aΩ(1 − γz2)cosT0 (106)

where it is assumed that aΩ = O(ǫ0). The stationary solution to the first order for ϕ is written as

ϕ = −aΩ(1 − γz2)cosT0 (107)
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Retaining the dominant terms of order ǫ0 in Eq. (105), inserting ϕ from (107) and using that

< cos2T0 >= 1/2 gives

D2
1z − (α − βz2)D1z + (1 − (aΩ)2γ)z + ((aΩγ)2 − δ)z3 = λz(t − T ) (108)

The autonomous Eq. (108) governing the slow dynamic of the motion can be examined through

analytical predictions.

We apply the averaging method [10, 11] by introducing a small parameter µ such that α = µα̃,

β = µβ̃, γ = µγ̃, δ = µδ̃ and λ = µλ̃. Then, Eq. (108) reads

z̈ − µ(α̃ − β̃z2)ż + ω2
0z + (µ2(aΩ)2γ̃2 − µδ̃)z3 = µλ̃z(t − T ) (109)

where ż = dz
dt

and ω2
0 = (1 − (aΩ)2γ). In the case µ = 0, Eq. (10) reduces to

z̈(t) + ω2
0z(t) = 0 (110)

with the solution

z(t) = R cos(ω0t + φ), ż(t) = −R ω0sin(ω0t + φ) (111)

For µ > 0, a solution is sought in the form (111) with R and φ time dependent. Variations of

parameters gives the following equations on R(t) and φ(t):

Ṙ(t) = − µ

ω0
sin(ω0t + φ) F1(R cos(ω0t + φ),−ω0R sin(ω0t + φ), t)

−µ2

ω0
sin(ω0t + φ) F2(R cos(ω0t + φ),−ω0R sin(ω0t + φ), t) (112)

φ̇(t) = − µ

ω0R
cos(ω0t + φ) F1(R cos(ω0t + φ),−ω0R sin(ω0t + φ), t)

− µ2

ω0R
cos(ω0t + φ) F2(R cos(ω0t + φ),−ω0R sin(ω0t + φ), t) (113)

where
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F1(z, ż, t) = (α̃ − β̃z2)ż + δ̃z3 + λ̃z(t − T ) (114)

and

F2(z, ż, t) = −(aΩ)2γ̃2z3 (115)

with z(t) is given by (111). Using the averaging method [10, 11] for small µ and replacing the

right-hand sides of (112) and (113) by their averages over one 2π period, since Eq. (109) is

autonomous, we obtain:

Ṙ ≈ − µ

ω0

1

2π

∫ 2π

0

sin(ω0t + φ)F1.dt − µ2

ω0

1

2π

∫ 2π

0

sin(ω0t + φ)F2.dt (116)

φ̇ ≈ − µ

ω0R

1

2π

∫ 2π

0

cos(ω0t + φ)F1.dt − µ2

ω0R

1

2π

∫ 2π

0

cos(ω0t + φ)F2.dt (117)

in which

F1 = −(α̃ − β̃z2) ω0R sin(ω0t + φ) + δ̃R3 cos(ω0t + φ)3 + λ̃R̃ cos(ω0t − ω0T + φ̃) (118)

and

F2 = −(aΩ)2γ̃2R3 cos(ω0t + φ)3 (119)

with R̃ = R(t − T ) and φ̃ = φ(t − T ). Evaluating the integrals in (116) and (117) yields

Ṙ = µ
( α̃

2
R − β̃

8
R3 − λ̃

2

R̃

ω0
sin(ω0T − φ̃ + φ)

)

(120)

φ̇ = µ
(

− 3δ̃

8

R2

ω0
− λ̃

2

R̃

ω0R
cos(ω0T − φ̃ + φ)

)

+ µ2
( 3γ̃2

8

(aΩ)2R2

ω0

)

(121)

Eqs. (120) and (121) show that Ṙ and φ̇ are O(µ). We expand in Taylor’s series R̃ and φ̃ as
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R̃ = R(t − T ) = R(t) − TṘ(t) +
1

2
T 2R̈(t) + . . . (122)

φ̃ = φ(t − T ) = φ(t) − T φ̇(t) +
1

2
T 2φ̈(t) + . . . (123)

Then, we replace R̃ and φ̃ by R(t) and φ(t) in Eqs. (120) and (121) since Ṙ and φ̇ and R̈ and

φ̈ are of O(µ) and O(µ2), respectively [12]. This approximation reduces the infinite dimensional

problem into a finite dimensional one by assuming µT is small.

After substituting the above approximation into (120) and (121), we obtain the following slow

flow

Ṙ = (
α

2
− λ

2ω0
sin ω0T ) R − β

8
R3 (124)

φ̇ = − λ

2ω0
cos ω0T +

3

8ω0
(γ2(aΩ)2 − δ) R2 (125)

5.2.2 Equilibria and self-excited oscillations

The equilibrium points in Eqs. (124) and (125), corresponding to the periodic motions in the

original system (108), are obtained by setting Ṙ = φ̇ = 0. This gives the two equilibria

R = 0, R =

√

8

β
(
α

2
− λ

2ω0

sin ω0T ) (126)

The solution R =
√

8
β

(α
2
− λ

2ω0
sinω0T ) corresponding to a periodic motion is real if

α

2
− λ

2ω0
sinω0T ≥ 0 (127)

By setting ω0 =
√

1 − (aΩ)2γ , Eq. (28) becomes

sin(
√

1 − (aΩ)2γ T ) ≤ α

λ

√

1 − (aΩ)2γ (128)

The above inequality provides the two following conditions, denoted by (CI), corresponding to
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the birth of the limit cycle

T <
1

√

1 − (aΩ)2γ
arcsin(

α

λ

√

1 − (aΩ)2γ) (129)

and

T >
1

√

1 − (aΩ)2γ
(π − arcsin(

α

λ

√

1 − (aΩ)2γ)) (130)

On the other hand, to find the frequency of the limit cycle, we let θ = ω0t + φ denote the argu-

ment of the cosine in Eq. (12). Then the frequency of the limit cycle is

ω =
dθ

dt
= ω0 +

dφ

dt
(131)

Using Eq. (125) yields

ω = ω0 −
λ

2ω0
cos ω0T +

3

8ω0
(γ2(aΩ)2 − δ) R2 (132)

Eq. (132) gives a relation between the frequency of the limit cycle ω, the excitation frequency

Ω, with ω0 =
√

1 − (aΩ)2γ , and the delay period T . A condition for the existence of the limit

cycle is guaranteed when ω is positive, which means that the following conditions, denoted by

(CII), obtained from Eq. (132) must be satisfied

T <
−i

ω0
ln

(EF − i
√

F 2(G2 + F 2 − E2)

F (−G + iF )

)

(133)

and

T >
−i

ω0
ln

(EF + i
√

F 2(G2 + F 2 − E2)

F (−G + iF )

)

(134)

where E = ω2
0 + 3α

2β
(γ(1 − ω2

0) − δ), F = 3λ
2βω0

(γ(ω2
0 − 1) + δ), G = −λ

2
and i =

√
−1.

A third condition (CIII) obtained from the expression of ω0 reads

Ω <
1

a
√

γ
(135)
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This condition (CIII) as well as the conditions (CI), Eqs. (129) and (130), and (CII), Eqs.

(133) and (134), are plotted in Fig. 36. These three combined conditions delimit the region

of suppression of limit cycles in the parameter plane (T , Ω). Results obtained by numerical

integration (squares) done in Matlab by using the integrating function dde23 [9] are also reported.

As it can be seen in Fig. 36, the region (B) where self-excited oscillations are absent increases

by increasing the delay amplitude λ. For large values of delay amplitude λ, self-oscillations can

be suppressed for moderate values of Ω in the vicinity of T = π
2
. In contrast, the case without

delay requires large values of Ω to suppress limit cycle. Indeed, Fig. 36(b) shows that for T = 0,

the limit cycle disappears for Ω = 70.7 and for T = π
2

the limit cycle vanishes for Ω = 32.8.

Phase portraits of slow dynamics (Eq. (108), Fig. 37(a-b)) and time histories of the corresponding

full motion (Eq. (2), Fig. 2(c-d)) are shown in Fig. 2 for λ = 0.3, T = 2.5 and for different values

of Ω. This illustrates the elimination of the limit cycle as we move from region A to region B, in

Fig. 1. Similar phase portraits and time histories are shown in Fig. 3 for λ = 0.3 and T = 0.5.

Phase portraits and time histories in Figs. 2 and 3 are obtained by numerical integration [9].
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Figure 36: Comparison between analytical results (solid line) based on conditions CI, CII, and

CIII and numerical integration (squares) of the original system, Eq. (2), for a = 0.02, α = β =

γ = 0.5, δ = 1/6. Region A : limit cycle exists. Region B : no limit cycle.

We have shown that adding delay in the horizontal fast harmonic (FH) excitation case increases

significantly the region in the (T ,Ω) plane where undesirable self-excited vibration can be elim-

inated. In contrast to the case without delay that requires large values of Ω to eliminate self-

excited vibration, the elimination here can be achieved for moderate values of Ω.
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Figure 37: Phase portraits of slow dynamics of z(t), Eq. (9), and time histories of the full motion

x(t), Eq. (2), with parameter values as for Fig. 1(a) and T = 2.5. Fig. 2(a-c) and Fig. 2(b-d)

correspond to regions A and B in Fig. 1(a), respectively.
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Figure 38: Phase portraits of slow dynamics of z(t), Eq. (9), and time histories of the full motion

x(t), Eq. (2), with parameter values as for Fig. 1(a) and T = 0.5. Fig. 3(a-c), and Fig. 3(b-d)

correspond to regions A and B in Fig. 1(a), respectively.
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5.3 Effect of rapid forcing on frequency-locking in a nonlinear self-

excited system

In this section we investigate the effect of high-frequency excitation on a van der Pol-Mathieu-

Duffing oscillator. We focus attention on the frequency-locking area in the neighborhood of the

2:1 resonance.

5.3.1 Slow motion

Consider the following van der Pol-Mathieu-Duffing oscillator subjected to a horizontal FH ex-

citation

ẍ + (1 − h cos ωt)x − (α − βx2)ẋ − γx3 = aΩ2 cos x cos Ωt (136)

where damping α, β, nonlinearity γ and excitation amplitudes h and a are small. An overdot

denotes differentiation with respect to time t. We assume that the frequency Ω is large comparing

to ω such that resonance phenomena with the frequency Ω is avoided. This oscillator can model,

for instance, optically driven MEMS resonators. It is known that these devices can self-oscillate

in the absence of external forcing, when illiminated by a DC laser of sufficient amplitude. The

parametric excitation in eq. (136) can be induced by modulating the incident laser.

To analyze the influence of high-frequency excitation on the slow dynamic of system (136), it

is convenient to use as before the method of DPM. We find the approximate equation for slow

motions

D2
1z + (1 − h cos ωT1)z − (α − βz2)D1z − γz3 =

1

2
(aΩ)2 cos z sin z (137)

This equation is similar to the original equation (136) in which the non-autonomous term

aΩ2 cos x cos Ωt is replaced by the autonomous one 1
2
(aΩ)2 cos z sin z. We focus the analysis

on small vibrations around the origin by expanding in Taylor’s series the terms sin z ≃ z − z3/6

and cos z ≃ 1 − z2/2. Keeping only terms up to order three in z, Eq. (137) becomes

D2
1z + (1 − 1

2
(aΩ)2 − h cos ωT1)z − (α − βz2)D1z − (γ − 1

3
(aΩ)2)z3 = 0 (138)

Note that in Eq. (138) the influence of frequency Ω is introduced in the natural frequency of the

system and in the nonlinear stiffness coefficient.
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5.3.2 Slow flow and entrainment

We rewrite Eq. (138) in the following form

z̈ + ω2
0z = (α − βz2)ż + ξz3 + hz cos ωt (139)

where ω2
0 = 1− 1

2
(aΩ)2, ξ = γ − 1

3
(aΩ)2. We express the main resonant condition by introducing

a detuning parameter σ according to

ω2
0 =

ω2

4
+ σ (140)

We apply a double perturbation technique [13,14] by introducing two bookkeeping parameters µ

and η, which will be set equal to unity in the final analysis. To implement the first perturbation

we use the parameter µ and for the second step perturbation we introduce the other parameter

η. Hence, Eq. (139) is rewritten as

z̈ +
ω2

4
z = µ{−σz + (α − βz2)ż + ξz3 + hz cos ωt} (141)

Using the multiple scales technique [7], we seek a solution to Eq. (141) in the form

z(t) = z0(T1, T2) + µz1(T1, T2) + O(µ2) (142)

where T1 = t and T2 = µt. In terms of the variables Ti, the time derivatives become d
dt

=

D1 + µD2 + O(µ2) and d2

dt2
= D2

1 + 2µD1D2 + O(µ2) where Dj
i = ∂j

∂jTi
. Substituting Eq. (142)

into Eq. (141) and equating coefficients of like powers of µ, we obtain

- Order µ0:

D2
1z0 +

ω2

4
z0 = 0 (143)

- Order µ1:

D2
1z1 +

ω2

4
z1 = −2D1D2z0 − σz0 + (α − βz2

0)D1z0 + ξz3
0 + hz0 cos ωT1 (144)

The solution to the first order is given by

z0(T1, T2) = r(T2) cos(
ω

2
T1 + θ(T2)) (145)

Substituting Eq. (145) into Eq. (144) and removing secular terms, we obtain the slow flow

modulation equations of amplitude and phase

dr

dT2
=

α

2
r − β

8
r3 − h

2ω
r sin(2θ)

dθ

dT2
=

σ

ω
− 3ξ

4ω
r2 − h

2ω
cos(2θ) (146)

80



Note that the system (146) is invariant under the transformation θ → −θ + π
2
, σ → −σ and

ξ → −ξ. This allows us to replace in Eq. (146) σ by sσ and ξ by sξ with s = ±1. Thus system

(146) reads

dr

dT2

=
α

2
r − β

8
r3 − h

2ω
r sin(2θ)

dθ

dT2

=
sσ

ω
− 3sξ

4ω
r2 − h

2ω
cos(2θ) (147)

Equilibrium points of the slow flow (147), corresponding to periodic oscillations of Eq. (139),

are determined by setting dr
dT2

= dθ
dT2

= 0. Using the trigonometric identity cos2 θ +sin2 θ = 1 and

we define ρ = r2, we obtain the following quadratic equation on ρ

(
β2

64
+

9ξ2

16ω2
)ρ2 − (

αβ

8
+

3σξ

2ω2
)ρ +

α2

4
+

σ2

ω2
− h2

4ω2
= 0 (148)

Eq. (148) has two real roots if the discriminant ∆ is nonnegative. This gives the condition

∆ = (
αβ

16
+

3σξ

4ω2
)2 − (

β2

64
+

9ξ2

16ω2
)(

α2

4
+

σ2

ω2
− h2

4ω2
) > 0 (149)

These two solutions are positive if the two following conditions are held

C =
α2

4
+

σ2

ω2
− h2

4ω2
> 0, B =

αβ

4
+

3σξ

ω2
> 0 (150)

Furthermore, Eq. (148) has only one positive root if

C =
α2

4
+

σ2

ω2
− h2

4ω2
< 0 (151)

In what follows we fixe the parameters α = 0.01, β = 0.05, γ = 0.1, h = 0.1, and a = 0.02.

In Fig. 1a the frequency response curve, as given by Eq.(148), is presented for Ω = 0 exhibiting

stable entrainment oscillations. The effect of the excitation frequency Ω on the frequency-locking

area is illustrated in Fig. 1b,c,d for the values Ω = 25, Ω = 40 and Ω = 50. It can be seen that

as the frequency Ω increases, the entrainment area shifts left and the nonlinear characteristic

stiffness changes causing the system to switch from softening to hardening behavior. Analytical

approximations (solid line for stable oscillations and dashed line for unstable one) are compared

to numerical integration (circles) using a Runge-Kutta method.

Fig. 2a illustrates the bifurcation curves of periodic solutions of the slow dynamic (139) for

Ω = 0. We can distinct three regions. In region I, where conditions (149) and (151) are satisfied,

there are two possible solutions: an unstable trivial solution and a larger stable one. Within

region II, where conditions (149) and (150) are satisfied, there are three possible solutions: one
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unstable, a larger stable one and the trivial unstable solution. Within the regions III only an

unstable trivial solution exists. In this region a limit cycle exists and it is stable. Fig. 2b is

plotted for Ω = 40 showing the effect of Ω on the bifurcation curves. It can be seen that, as Ω

increases, the region I switches from the right branche of the curve ∆ = 0 to the left one causing

an exchange between regions II and III inside the curve ∆ = 0. This behavior is consistent with

the spring characteristic change of the backbone curve in Fig. 1.

5.3.3 Slow slow flow and limit cycle

In this section we construct analytical approximations of the limit cycle of the slow flow (147)

corresponding to quasi-periodic motion of the slow dynamics (139).

We transform the polar form (147) using the variable change

u = r cos θ, v = −r sin θ (152)

to the Cartesian system

du

dT2
= (

sσ

ω
+

h

2ω
)v + η{α

2
u − (

β

8
u +

3sξ

4ω
v)(u2 + v2)}

dv

dT2
= −(

sσ

ω
− h

2ω
)u + η{α

2
v − (

β

8
v − 3sξ

4ω
u)(u2 + v2)} (153)

To implement the second perturbation step, η is introduced in damping and nonlinearity. Fol-

lowing [13,14], we approximate periodic solution of the slow flow (153) by using a multiple scales

perturbation expansion. We expand

u(T2, T3) = u0(T2, T3) + ηu1(T2, T3) + O(η2)

v(T2, T3) = v0(T2, T3) + ηv1(T2, T3) + O(η2) (154)

where T2 = µt and T3 = ηT2 = ηµt. Introducing Di = ∂
∂Ti

yields d
dT2

= D2 + ηD3 + O(η2).

Substituting Eqs. (154) into Eqs. (153) and collecting terms, we get

- Order η0:

D2
2u0 + ν2u0 = 0,

(
sσ

ω
+

h

2ω
)v0 = D2u0 (155)

- Order η1:

D2
2u1 + ν2u1 = (

sσ

ω
+

h

2ω
)[−D3v0 +

α

2
v0 − (

β

8
v0 −

3sξ

4ω
u0)(u

2
0 + v2

0)]

− D2D3u0 +
α

2
D2u0 − D2[(

β

8
u0 +

3sξ

4ω
v0)(u

2
0 + v2

0)]

(
sσ

ω
+

h

2ω
)v1 = D2u1 + D3u0 −

α

2
u0 + (

β

8
u0 +

3sξ

4ω
v0)(u

2
0 + v2

0) (156)
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Figure 39: Amplitude frequency response near 2:1 resonance. Analytical approximation: Solid

(for stable) and dashed for (instable). Numerical simulation: circles.
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Figure 40: Bifurcation curves of periodic solutions of the slow dynamic (139) near 2:1 resonance.

where ν =
√

(σ
ω
)2 − ( h

2ω
)2 is the proper frequency of system (153) corresponding to the frequency

of slow flow limit cycle.

The solution to the first order system (155) is given by

u0(T2, T3) = R(T3) cos(νT2 + ϕ(T3))

v0(T2, T3) = − ν

( sσ
ω

+ h
2ω

)
R(T3) sin(νT2 + ϕ(T3)) (157)

Here R(T3) and ϕ(T3) are functions of T3 = ηT2. Since T2 = µt is slow time, and since we have

assumed η to be small, we shall refer to T3 as ”slow slow time” or ”s.s. time” for brevity [15].

Substituting (157) into (156) and removing secular terms gives the following autonomous s.s.

flow system on R and ϕ

dR

dT3
=

α

2
R − sβσ

8sσ + 4h
R3

dϕ

dT3
= − 3sξ(8σ2 + h2)

8ω(2sσ + h)
√

4σ2 − h2
R2 (158)

Equilibria in Eqs. (158) are obtained by setting dR
dT3

= 0 and given by

R = 0, R =

√

2α(2sσ + h)

sβσ
(159)

The non-trivial equilibrium in Eq. (159) will correspond to the amplitude of the limit cycle of

the slow flow (153) and to quasi-periodic oscillations in the slow dynamic (139). In Figs. 42
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a,b we draw for the two different values Ω = 0 and Ω = 40 the analytical amplitude of the

slow flow limit cycle, Eq.(159), and the entrainment area as given by Eq. (148). The curves

labelled L+ correspond to s = +1 in Eq.(159) and the curves labelled L− correspond to s = −1.

The shift of the entrainment area can be clearly seen. The numerical modulation amplitude

vibrations (quasi-periodic oscillations) are marked with double circles connected with a vertical

line. Comparison of analytical results and numerical integration of the modulation amplitude

motion shows a good agreement.
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Figure 41: Effect of the frequency Ω on the entrainment area and on the modulation amplitude

vibration.

The approximate periodic solution is given by

u(T2) = R cos(νT2 + ϕ)

v(T2) = − 2νω

(2sσ + h)
R sin(νT2 + ϕ) (160)

where

ϕ = − 3sξ(8σ2 + h2)

8ω(2sσ + h)
√

4σ2 − h2
R2T3 (161)

and the quasi-periodic oscillation of the slow dynamic system (139) is written as

z(t) = u(T2) cos(
ω

2
t) + v(T2) sin(

ω

2
t) (162)

Finally, the quasi quasi-periodic response of the original system (136) is given by Eqs. (160),

(161) and (162). To validate the analytical finding, we show in Fig. 42 the comparison between
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the approximate periodic solution (160) and the numerical integration of the slow flow (153)

using Runge-Kutta method. Fig. 42 (a),(c) are plotted for s = +1 and Fig. 42 (b), (d) are

plotted for s = −1.
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Figure 42: Comparison between analytical approximation (solid line) of periodic solution, Eq.

(160), and numerical integration (crossed line) of the slow flow (153).

In Fig. 43 we present examples of time histories of the slow dynamic z(t) obtained by numerical

simulation. Results show that FH excitation can change the nonlinear characteristic spring

behavior of the system from softening to hardening or vice versa and cause the entrainment area

to shift. In contrast, no significant effect on the amplitudes of both entrained and quasi-periodic
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Figure 43: Examples of time histories of the slow dynamic z(t) by numerical integration for

Ω = 0.

responses is noticed. The control and adjustment of the entrainment area to a desired frequency

range in the vicinity of the considered resonance may be achieved by acting only on the frequency

Ω. This result is of interest from engineering applications point of view.
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6 Homoclinic functions and homoclinic bifurcation

Our efforts have aimed at

1. the inhibition of homoclinic chaos in an asymmetric oscillator driven by an external exci-

tation,

2. homoclinic bifurcations in planar polynomial systems perturbed by an arbitrary analytic

autonomous functions,

3. approximation of homoclinic or heteroclinic bifurcations in three-dimensional ordinary

differential equations.

The first two parts constitute the core of the Ph.D. dissertation by [A. Azouani, ”Suppression of

chaos in an asymmetrical mechanical system and computation of Melnikov functions of second

order autonomous equations” Ph.D. University Hassan II-Ain Chock (November 2004)].

The first part of this work deals with the suppression of chaos in a driven nonlinear system corre-

sponding to an asymmetric two-well potential energy with two kinds of nonlinearities: quadratic

and cubic

ẍ + δẋ + αx + βx2 + γx3 = P cos(ωt) (163)

The cases of symmetric two-well potential and single well potential were studied separately in the

last two decades. Melnikov analysis is used to detect parameter regions with homoclinic chaos.

It was shown that different nonlinear resonant parametric perturbations lead to suppression of

chaotic motions. Numerical support was performed to confirm the analytical prediction using

Lyapunov exponents. The resonances that may suppress chaos in the system were depicted. For

instance, it was shown that the fundamental resonance 1:1 and the subharmonic resonance 1:2

do not suppress chaos in the nonlinear cubic case.

ln the second part of this work, we have considered the homoclinic bifurcations in planar poly-

nomial systems perturbed by arbitrary analytic autonomous functions. The purpose here is to

give an explicit computation of the Melnikov function which plays a fundamental role in the

theory of homoclinic bifurcation. This Melnikov method gives us an excellent tool for studying

global bifurcations that occur at homoclinic (heteroclinic) loops or in one-parameter families of

perturbed dynamical systems.

ln the classical case where the degree of the potential energy is less than three, the Melnikov

function is related to the elementary functions which are connected with circular functions. ln
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the case of degree four or five, the Melnikov function is related to elliptic functions. If we consider

for example the polynomial function of order 5, local analysis tells us that the movable singular-

ities are square root branch points and the corresponding quadrature becomes the hyperelliptic

integral. Explicit integration becomes much more complicated, the complex time extension is

necessary and many deep results from algebraic geometry come into play.

Concerning the approximation of homoclinic or heteroclinic bifurcations in three-dimensional

ordinary differential equations, we have investigated the system

ẋ = y

ẏ = z (164)

ż = −z − µ1y + µ2x − x2

We have shown that using the collision [17] criterion between the hyperbolic fixed point and the

limit cycle involved in the bifurcation, we can determine an analytical expression for the homo-

clinic connection. The strategy is mainly based on the construction of analytical approximations

of the periodic solution. Then the collision criterion is applied and analytical approximations for

homoclinicity are given. The result is summarized in [16].

7 Development relevance

One of the main purpose of the current DFG/BMZ program, devoted to research institutions

in developing countries, is focused on strengthening the research capacity and the scientific ef-

ficiency of participating scientists in the countries in question in order to solve developmental

problems in these countries. The current program has largely contributed to this goal.

For the first time, experimental research on vibration problems in mechanics has been established

in the Prof. Belhaq laboratory in Casablanca through this bilateral cooperation project. To our

knowledge, this important realization constitutes the first achievement of experimental research

in vibration mechanics in any Moroccan university. As an ultimate objective, this realization will

contribute to generate links with the socio-economic environment in Morocco and will initiate

specific joint research projects with industrial partners. Such cooperation has been deeply missing

in Moroccan universities so far. The establishment of the experimental set-up (see in the CD-

ROM : ”key−elements/vue−exp.JPG” ) in Casablanca will focus Prof. Belhaq’s research activity
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essentially towards experimental work. Future graduate students in the group will be guided to

experimental projects when preparing their Ph.D. thesis.

As a direct result of our experimental environment, the head of the Casablanca Polytechnic

Institute, a branch of the Canadian based Laval University, has expressed his great interest to

collaborate in the experiment and proposed to involve the department of mechanical engineering

of his institute into the project. As a first step, he offered laboratory space and provided some

equipment and facilities for our graduate students in his institute.

Also, two assistant professors from his institute will be involved in the experiment works, namely:

1- Dr. Faouzi Lakrad, former Ph.D. student of Prof. Belhaq (2001), PostDoc of Prof. Fiedler in

Berlin (2001-2003) and Humboldt research fellow with Prof Schiehlen in Stuttgart (2003-2004)

and now Director of Research in the Casablanca Polytechnic Institute.

2- Dr. Mustafa Charafi, graduate of the Department of physics in Casablanca and now Director

of Alumni Affairs in the Casablanca Polytechnic Institute.

Since 2006, the laboratory in this institute became operational. Many students from the institute

and from the university prepared their project in working on practical vibrational problems. A

student can conceive and realize the plan under the supervision of Dr. Lakrad, responsible of

the laboratory, member of the current program. Each year the institute organizes a scientific

meeting. Industrials from different area are invited to visit the lab and to see some demonstra-

tions on vibrational problems from our experiments. Very positive reactions were provided by

the industrial leaders and some possible connections in terms of academic education and research

will be concretized.

Another interesting link has been initiated recently. Indeed, encouraged by the emerging ex-

perimental environment in Casablanca, an important Moroccan company (Laraki Automobiles

Company) involved in the construction of Moroccan cars (Laraki Fulgura and Laraki Borac) has

contacted the Casablanca group to discuss the possibility of collaboration on vibrations and noise

testing in industrial vehicles. By the lack of vibration laboratories in Morocco, the company is

now planning to collaborate with Prof. Belhaq’s research group in terms of research, tests, con-

trol and measurement.

As a first step, the Laraki automobiles company plans to organize in Casablanca in collabora-

tion with Prof. Belhaq’s research group a Symposium on vibrations and noise in vehicles. This

Symposium will be an opportunity for industrials and researchers to meet and discuss possible

collaborations. To reinforce our bilateral collaboration with our German colleagues, two German
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experts in vibrations will be invited by Prof. Belhaq to attend the Symposium.

Recently very interesting possibilities in terms of industrial cooperation and experimental re-

search are opening. This project indeed helps to accelerate the establishment of a far-reaching

research-development process in Morocco in very specific terms. Keeping this cooperation going

on will significantly strengthen the research capacity and the scientific efficiency of the partici-

pating Moroccan scientists and will help solving developmental problems in Morocco – which is

the principal purpose of this program.

Regarding academic collaboration, the group is successfully developing international connection.

Indeed, a new international cooperation is established between Prof. Belhaq, Prof. B. Blyukher,

Indiana State University (USA) and Dr. T. Niezgoda, Military University of Technology, War-

saw, Poland. Prof. Blyukher visited the Prof. Belhaq lab in March 2005 and set up cooperation

between the three partners. The experimental laboratory available in Casablanca will be used to

perform experimental analysis of the dynamics of elastic shell structures to be considered in the

project on Oil and Gas pipeline security in the framework of the NATO-Mediterranean Dialogue

project.

During the congress of Mechanics held in Casablanca in April 2007, some colleagues have been

interested in the Belhaq experimental laboratory. Many of them have visited the lab and possi-

bilities for performing some experimental work in Casablanca have been discussed.

Recently, a graduate student from the casablanca group, M. Sah, has been granted the Fulbright

award for a co-supervisor doctorate. He is now for one year in Cornell University, at the Depart-

ment of Theoretical and Applied Mechanics, working under the co-supervising of Prof. R. Rand.

During the period of this programm, the Belhaq group has been very active and productive in

terms of scientific publications and in terms of participation in international conferences. See

the list of publications in section 1.8.

During the period of the programme, three Moroccan students have defended their Ph.D. Two

of them under the direction by Prof. Belhaq (Dr. K. Guennoun and Dr. N. Abouhazim) and

Dr. A. Azouani under the co-direction of Prof. Belhaq and Prof. Fiedler. Dr. Azouani has ben-
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efited from the DAAD Sandwich Programme established between Prof. Belhaq and Prof. Fiedler.

Other Moroccan students (M. Hamdi, S.M. Sah and R. Bourkha) are now finishing their Ph.D.

dissertation in Casablanca. One of them, S.M. Sah, is starting his co-supervisor doctorate at

Cornell university under a Fulbright grant. Also, an Assistant Professor, A. Fahsi, working in the

Casablanca group will defend his Habilitation diploma this academic year. See the dissertation

list in section 1.8.2.
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8 Summary

The project addressed the chaotic and nonchaotic dynamics of a vibrating elastic blade in the

presence of single-well and double-well magnetic fields. The experimental set-up involved a

frequency controlled shaker for the mounted blade, adjustable magnets, electronic tracking of

accelerometer data, and video documentation of the resulting dynamics. Theoretical methods

included direct numerical simulation of the properly damped beam equation with cubic non-

linearities, as well as in-depth analysis based on multiple scales expansions, mode interactions

and homoclinic bifurcation theory. One visually striking phenomenon was the observed energy

transfer from high-frequency low-amplitude vibrational modes to high amplitude low-frequency

modes, which could even lead to the destruction of the unbreakable blades.

Going beyond the original scope of the project, preliminary results on the combined effects of

rapid forcing and time-delayed control on the resulting global diagrams have also been obtained.

Specifically this led to a strategy for the suppression of hysteresis between 1:2 frequency locking

and quasiperiodic modes. Such hysteresis is often undesirable in mechanics, in general, and in

applications to microelectromechanical systems (MEMS) and to material cutting processes, spe-

cially. In the framework of this project the first experimental research in Morocco on vibration

problems in mechanics has been established in the lab of Prof. Belhaq, Casablanca. The project

has drawn substantial interest, both from academic and industriel partners. Theoretical results

have been presented in 24 publications.

A total of six PhD students have been partially supported by the project, as well as one Ha-

bilitation candidate. Dr. Lakrad, a previous graduate from Belhaq group who was significantly

involved in the project, has been hired as Full Professor at the Univesity Hassan II, Casablanca,

in January 2008.
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