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Minimum-Dilation Tour (and Path) is NP-hard

Panos Giannopoulos* Christian Knauer' Déniel Marx?

Abstract

We prove that computing a minimum-dilation (Euclidean) Hamilton circuit or path
on a given set of points in the plane is NP-hard.

1 Introduction

Let P be a set of n points in R? and G be a geometric network on P, i.e., an undirected graph
G(P, E) drawn with straight line edges on the plane, where the weight of an edge pg € E
equals the Euclidean distance |pq|. The dilation dg(p, ¢) of a pair of points p, g in G is defined
as 0¢(p,q) = da(p, q)/|pq|, where dg(p, q) is the weight or length of a shortest path from p to
q in G. The vertez-to-vertex dilation or stretch factor 6(G) of G is defined as

0(G) = max dg(p,q).
(©) = max ba(p.a)

For a real number ¢ > 1, we say that G is a t-spanner for P if 6(G) < t.

The cost of a network can be measured by the number of edges, the weight, the diameter,
or the maximum degree. Constructing low-cost geometric networks of small dilation, as
alternatives to the ‘expensive’ complete Euclidean graphs, is a problem that has been studied
extensively. For example, for any given n-point set in the plane and any € > 0, a (1 + €)-
spanner with O(n/¢) edges can be constructed in O((nlogn+n/e?))log(1/¢) time [4]; see also
the surveys by Eppstein [6] and Smid [11], as well as the forthcoming book by Narasimhan
and Smid [10]. To the other end, one can ask what is the minimum dilation that can be
achieved by a network with a given number of edges and other additional properties, and how
do we compute such a network. We are interested in the complexity of the following problem:

Minimum-dilation tour (path): Given a set P of points in the plane, compute a minimum-
dilation Euclidean Hamilton circuit (path) on P.

Related work. Klein and Kutz [9] have recently proved that computing a minimum-dilation
geometric network on a point set in the plane, using not more than a given number of edges,
is NP-hard, no matter whether edge crossings are allowed or not. Moreover, Cheong et al. [5]
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showed that the problem remains NP-hard even for the minimum-dilation spanning tree. On
the other hand, Eppstein and Wortman [7] gave polynomial time algorithms for the minimum-
dilation star problem. Several hardness results exist also for the related problem of finding
spanners of given small dilation and weight in general weighted graphs [2, 3, 1].

Results. We prove that the minimum-dilation tour (and path) problem is (strongly) NP-
hard. The problem requires the use of exactly n (n — 1, for a path) edges and that every
vertex have degree 2 (except for the start and end-point in the case of a path). Note that
the proofs of the results by Klein and Kutz and Cheong et al., mentioned above, cannot
handle our problem since the former creates graphs with more than one cycle, while the
latter works only for trees with no restriction on the maximum degree. Also, both of these
results use reductions from SET PARTITION, while we use a different approach and reduce
from the HAMILTON CIRCUIT problem on grid graphs [8]. A collorary of our reduction is that
the minimum-dilation tour (and path) problem does not admit an FPTAS.

2 Reduction

For a point p € R?, we denote by p(1),p(2) its x and y-coordinate respectively.

Let G*° be the infinite graph whose vertex set contains all points of the plane with integer
coordinates and in which two vertices are connected if and only if the Euclidean distance
between them is equal to 1. A grid graph is a finite, node-induced subgraph of G*°. Note
that a grid graph is completely specified by its vertex set. It is well-known that deciding
whether a given grid graph has a Hamilton circuit is an NP-hard problem [8]. We reduce the
Hamilton circuit problem in grid graphs to the decision version of the minimum-dilation tour
problem. Our main result is the following:

Theorem 1 Given a set P of points in the plane and a parameter § > 1, the problem of
deciding whether there exists a Euclidean Hamilton circuit on P with dilation at most § is

NP-hard.

Proof: Let G be a grid graph with vertex set V and |V| = n. Using V', we construct a point
set P such that, for some §, a Hamilton circuit on P with dilation at most § exists if and only
if G has a Hamilton circuit.

We assume that G has no degree-0 or 1 vertices, since, otherwise, there is no Hamilton
circuit in G; this can be checked in polynomial time. Consider the smallest enclosing rectangle
R of G, see Fig. 1. Since G is finite and |V| = n, R has finite dimensions and its height is at
most n. Let v € V' be the vertex that is closest to the lower-left corner of R and lies on the
left vertical edge of R. Then, v must be a degree-2 vertex and have a neighbor on the same
edge of R; let u be this vertex. We append two point-sets, called ‘handles’, S and T to G
as shown in Fig. 1. Each handle has one horizontal and one vertical part consisting of 2 and
n + 1 points respectively, and the two parts have one point in common. We have

S ={s1 = (u(l)—1,u(2)),s2 = (u(l)—2,u(2)) } U{s; = (u(1)—2,u(2)+i-3)|i = 3,...,n+3}
and

T ={t; = (v(1)—1,v(2)),t2 = (v(1)—2,v(2)) }U{t; = (v(1)—2,v(2) —i+3)|i = 3,...,n+3}.
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Figure 1: A grid graph G, its smallest enclosing rectangle R, and the point-sets (‘handles’) S and 7.

Let W =V USUT. We have that |IW| = 3n + 4. Copies of W will be included later in
P. Consider the points s,t € W with s = s,,43 and ¢ = t,,43. We have that |st| =2n+1. We
start with a simple lemma.

Lemma 2 There exists a Hamilton s-t path on W with length 3n+ 3 if an only if there exists
a Hamilton circuit in G.

Proof: Assume that there exists a Hamilton s-t path on W with length 3n + 3. Since W
contains 3n + 4 points, any such path must contain only edges with length 1. Every point s;
with ¢ = 3,...,n 4+ 2 is at distance one only from two points, namely, s;+1 and s;—1. Hence,
the s-t path must contain the edges s;11s; and s;s;_1. Similarly, the path must contain the
edges t;11t; and t;t;—1 for i = 3,...,n + 2. The edge soty cannot be in the path, since,
otherwise, the path cannot visit all points in W. Thus, so and ¢ have to connect to s; and
t1 respectively. Similarly, sit; cannot be in the path, and so, the edges sju and ¢;v must be
in the path. The remaining of the s-t path must have a length of 3n +3 —2(n+2) =n—1
and visit the remaining n — 2 vertices of V' starting from u and ending at v. This implies that
there is a u-v Hamilton path Hg in G. Since v and v are neighbors in G, edge uv and the
u-v path Hg form a Hamilton circuit in G.

Conversely, assume that there is a Hamilton circuit in G. Since v has degree two, any
such circuit contains uv. Thus, there is a u-v Hamilton path on V with length n — 1. We
append to the latter path the edges sju, sas1, tiv, tot1, and s;118;, SiSi—1, tiv1ts, titi—1 for
i =3,...,n+ 2. This forms a Hamilton s-t path on W with length 3n + 3.

We continue with the construction of point set P. First, we choose points on a rectangle R’
of width o and height 3, with

a=(2n* 4+ 1)n® 4+ 2n?n® and B = 2n5 + 3n3.

Let a, b, ¢, and d be the upper-right, upper-left, bottom-left, and bottom-right corner points of
R’ respectively. Consider a straight-line segment of length n%. We choose a set B of points on
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Figure 2: Constructing point set P.

the segment at regular intervals such that the distance between any two consecutive points is
n/2. We have that |B| = 2n°+1. We use B as a ‘building’ block: starting on the upper side of
the rectangle, from a, we choose copies of B, simply referred to as blocks, at regular intervals
of length n?; see Fig. 2 (to avoid cluttering, the edges of the rectangle are not shown). Let
K,L, M, and N be the sets of points on the right, upper, left, and lower side of the rectangle
respectively. Sets K and M are unions of two vertical blocks each, while L and N are unions
of 2n? + 1 horizontal ones. The right and left-most point of an horizontal block are called
the right and left end-points of the block. Similarly, the lower and upper-most point of a
vertical block are called the lower and upper end-points of the block. Let K = K; U Ko,
where K1, K5 is the upper and lower block respectively, as shown in Fig. 2. Also, let e be the
lower end-point of K7 and f be the upper end-point of K5. In the empty interval, i.e., the
gap, between K7 and Ks, we place point set W such that its handles S and T lie on the right
side of R’. Additionally, we require that

les| = [ ft] = (n® — |st])/2 = (n® — 20— 1)/2.

Since the height of the minimum enclosing rectangle R of V' is at most n, the distance between
any point of a block and any point of W is at least (n® —2n — 1)/2 as well. A reflected copy
of W, denoted by W', is placed between the two blocks (subsets) of M in a similar way. Let

P=KULUMUNUWUW

and
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Figure 3: The Hamilton circuit Hp and example positions of points p’ and ¢'.

a+f—-2n+1)+3n+3

5= 3 =14n%+ g(n) + h(n),
with 5 )
n° —n n—+ 2
T and h(n) = —— 2
9(n) = 5oy and hn) = 5y

Note that g(n), h(n) < 1 for every n > 1. We have that |P| = (2n?+1)(2n°+1)+2(2n°+1) =
O(n").

Lemma 3 If there is a Hamilton s-t path on W with length 3n + 3, then there is a Hamilton
circuit on P with dilation at most §.

Proof: Let Hy be a Hamilton s-t path on W with length 3n 4+ 3. We construct a Hamilton
circuit Hp on P by simply connecting the points in K, L, M, N in the ‘canonical’ way along
the sides of rectangle R’, as shown in Fig. 3. First, every two consecutive points in each block
are connected by an edge. Second, in L, N, the left end-point of each block is connected to
the right end-point of its immediate neighbor block. Finally, the upper end-point of K7 and
the lower end-point of K5 are connected to points a and d respectively, while e connects to s
and f connects to t; the blocks of M are connected to b, ¢, and the point set W’ in a similar
way. We prove that §(Hp,) < d. Let p and g be the ‘middle’ points of L and N respectively.
That is,
p=(a+0b)/2 and ¢=(c+d)/2.

Note that any path from p to ¢ in Hp must go through either W or W’. By the symmetry of



the construction of Hp, we have that

drp(prq) = Ipal + lad| + |dg| — |ef[ + [es| + | ft] + dry, (s, 1)
a+ [ —|st| + dmy, (s, 1)
a+fB—-2n+1)+3n+3=a+F+n+2.

We also have that

A, (p,q) a+B+n+2 o n+2
1) = P = =1 — [
e (P, ) pd] E RNCANCTER
(2n2 + 1)nb + 2n%n3 5  n3—n?
+ 2nb 4 3n3 +hln) Tt 2n3 + 3 +hln)

= 14 n2+g(n)+h(n)=0.

We now prove that for any other pair of points p’,¢' € P, dy,.(p',¢') < . We distinguish the
following cases, see Fig. 3:

(i) p, ¢’ lie on opposite sides of R’, or p’ € W' and ¢’ € K (symmetrically, p’ € M and ¢’ € W),
or p’ € W and ¢’ € W. In this case we have that [p'q’| > |pq|. Note that the total length
of Hp is 2dg,(p,q), hence du,(p',q¢") < du,(p,q). Thus, oy, (0',¢) = du, (', ¢)/1P'd| <
drp(p,q)/lpal = 0.

(ii) p/, ¢’ lie on non-opposite sides of R’ and there is a path in Hp connecting them that visits
no point in W (symmetrically, W’). If p/, ¢ lie on the same side of R’, then dy,(p',q') =
Ip'q'|, hence g, (p',q') = 1. If p/, ¢ lie on different, i.e., vertical to each other, sides, then
drp (P, q') = Ip'al +laq'| <2|p'¢|, hence 6u, (p', ¢') < 2.

(iii) p/, ¢’ lie on non-opposite sides of R’ and any path in Hp connecting them must visit a
point in W (symmetrically, W’). First, |p'q/| > |es| = (n® — |st])/2 = (n® — 2n — 1)/2. Let
z = [p'(1) —a(1)] and y = [p'(2) — ¢'(2)|. Then,

du, (0, q) <z +y+du,(st) <2pd|+3n+3.

Thus, 6, (P, ¢') <2+ (3n+3)/(n® —2n — 1) < 3, for any n > 3.

(iv) Finally, when p',q’ € W or W', we have that dg,(p',q¢) < dg,, (s,t) = 3n + 3 and
Ip'q| > 1, hence dp,,(p',¢') < 3n+3 <4, for any n > 4. Hl

Conversely, we now prove the following.

Lemma 4 Ifthere is a Hamilton circuit on P with dilation at most d, then there is a Hamilton
s-t path on W with length 3n + 3.

Proof: Let Hp be a Hamilton circuit on P with 6(Hp) < §. Also, let p = (a + b)/2 and
q = (c+d)/2. We prove that Hp must contain a path from p to ¢ that is ‘locally optimal’ in
the sense that firstly, it connects p to s and t to ¢ in the ‘canonical’ way on the sides of R’
(as is was described the proof of Lemma 3), and secondly, it connects s to ¢ via a Hamilton
path on W with length 3n + 3. In particular, we show that ¢ is small enough to ensure that
the following requirements be met:

(i) Once inside a block, Hp visits all the points of the block before leaving it. To see this,
consider a block B and a point p; € B for which there is an edge op; with o € P\ B (such a
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set of vertices of B visited by the
S part of Hp between p; and p;
Figure 4: Case (i) in the proof of Lemma 4.

point must exist since Hp must visit all the points of P); see Fig. 4. We trace Hp starting
from o and entering B via op;. Assume that Hp leaves B before having visited all its points
and let p; be the last point visited and p; be a point that is left out. Then, at least one
neighbor point, say prpy1 of pr in B is not connected to pj via this part of Hp inside B.
Also, Hp must visit py but only after it has visited at least one point outside B. Let o
be such a point connected to p; with an edge p;jo’. Note that o' must be in some block
other than B or in W or in W’; the same holds for o. Recall that the distance between any
two blocks is at least n3 and that the distance between any block and W or W’ is at least
les| = (n® — 2n — 1)/2. Hence, |p;o’| > (n® —2n —1)/2 and |op;| > (n® — 2n — 1)/2 as well.

We have that dg,, (prt1,pk) > 2min{|p;o’], lopi|} > 2(n3 — 2n — 1) and
Omp(Pr+1,PK) = ditp (i1, Pr) > 20’ —2n—1) =2n? —4— 2
|PE+1Pk| n n

> 22 —6>n*+2>0,

for any n > 3.

(i) Once inside W (or W), Hp visits all the points of W (or W’) before leaving it. This can
be seen by using arguments similar to the ones in case (i). Note, first, that every point in W
is at distance 1 from at least one other point in W; for each of s,t, there is exactly one such
point, while for any other point there are exactly two. If Hp visits W and leaves without
having visited some point p’ € W, then there is a point ¢ € W with [p'¢’| = 1 that is not
connected to p via this part of Hp inside W. Then dy, (p',q') > 2|es| = 2(n® — 2n — 1) and

dup (', )

el 2(n® —2n—1)>n*+2> 4,

omp (P, 4)

for any n > 3.

(iii) Any two blocks that are consecutive along the sides of R’ must be ‘connected’ by an
edge in Hp, as long as W or W’ does not lie between the two blocks. To see this, consider a
block B and a neighbor of it, B’, and let p’ and ¢’ be the endpoints of B and B’ respectively,
with |p'¢’| = n3. Assume that Hp contains no edge connecting a point of B to a point of
B'; see Fig 5. Then, any path from p’ to ¢ in Hp must visit some other block, different
from B and B’, and, hence, dg,(p',q') > n®, where n% is the diameter of any block. Thus,
Sup(0,q) >n/n? =n%>n?+2>§, for any n > 2.



Figure 5: Examples of the case (iii) in the proof of Lemma 4.

(iv) Blocks K1, Ko must be connected to W by an edge in Hp; this holds also for the blocks
in M and W’'. Similarly to the case (iii), assume, for example, that Hp contains no edge
‘connecting” K1 and and W. Then, any path from e to s in Hp must visit some other block
as well. By case (i), once in the latter block, Hp has to visit all its points before exiting.
Hence, dg,(e,s) > nb and

dm,(e,s) nd

3
>n° >4,
les| (n3 —2n—1) "

Stip(e,s) =

for any n > 2.

All the above requirements assert that Hp does not contain ‘long’ edges (jumps) between
any two points of P that belong to different blocks or between a point of a block and a point
of W or W'. Note that, since all points of a block lie on the same straight-line segment, the
minimum-length Hamilton path on a block has length n®; any detour increases this length by
at least n. Also, as already noted before, s and t are the points of W that are closest to e and
[ respectively. Case (ii) also asserts that the part of Hp inside W (W’) forms a Hamilton s-¢
path on W (W); let [ be its length. Consider now the pair p, q. By combining all the above,
we have that

(1) ditp (pra) > [pal + lael + les| + 1+ [t + | fdl + |dg = o+ B — 20+ 1)+ 1

Since 0(Hp) < §, we have that dy,(p,q) < 0 as well. From the proof of Lemma 3, this
implies that
(@) dip(p,a) @+ Btn+2.

From (1), (2), we have that [ < 3n + 3. However, any Hamilton path on W has length at
least 3n + 3, and the lemma follows.

Note that all points in P have rational coordinates with numerators and denominators
bounded by a polynomial in n. Also, the construction of P takes O(|P|) = O(n") time.
Combining Lemmata 2, 3, and 4, concludes the proof of the theorem. Hl

The proof of Theorem 1 is based on a reduction from the HAMILTON CIRCUIT problem
in a grid graph G. As already mentioned above, any Hamilton path on W has length at least
3n + 3 and, from Lemma 2, this value is achieved if and only if there is a Hamilton circuit in



G. On the other hand, if there is no Hamilton circuit in G, then any Hamilton path on W
has length at least (3n 4 3) — 1 +1/2: in this case, at least one diagonal of the grid must be
used by the path. This observation implies that the minimum-dilation tour problem admits
no FPTAS.

Corollary 5 The minimum-dilation tour problem does not admit an FPTAS.

Proof: Assume that that there is an FPTAS. When run on P, the algorithm computes,
in O((1/€)°n*) time, for constants c,k, a Hamilton circuit Hp and its dilation &px with
Japx < (14 €)dopt, for any € > 0, where dqpg is the dilation of an optimal tour. Consider any
e < (V2 —1)/(B5), where 3,6 are as in the proof of Theorem 1.

Note that dapx < (14 €)d implies that

ape < 6+ V2 -1 _ a+ﬂ—(2n+1)+3n+3+(\/§—1)‘
B 5

Consider the ‘middle’ points p,q. Since |pg| = 3, we have that dy,(p,q) < a+F—(2n+1)+
3n 43+ (v/2 — 1). It is easy to check that term /2 — 1 is small enough to leave no other
alternative to Hp but the form imposed by the cases (i), (ii), (iii), and (iv) in the proof of
Theorem 1. Moreover Hp must visit W through its the points s and ¢: if any other point in
W is visited first instead, dg, (p, ¢) will increase by at least 2. Hence, Hp contains a Hamilton
path on W of length 3n + 3.

On the other hand, if d,px > (1 + €)6, then dqp¢ > 6. But, for any Hamilton circuit H on
P we have that 6(H) > dopt > 0, which, by Lemma 3, implies that there is no Hamilton path
of length 3n + 3 on W. Hl

As it is easy to see, the proofs of Theorem 1 and Corollary 5 hold also for the decision version
of the minimum-dilation path problem by considering a point set that contains p and ¢, the
points of P that lie on R’ to the right side of p and ¢, and the points in W.

Corollary 6 Given a set P of points in the plane and a parameter 6 > 1, the problem of
deciding whether there exists a Fuclidean Hamilton path on P with dilation at most & is
NP-hard. The minimum-dilation path problem does not admit an FPTAS.

3 Concluding remarks

We have proved that computing a minimum-dilation (Euclidean) Hamilton circuit or path
on a given set of points in the plane is NP-hard, and that the problem does not admit an
FPTAS. Does it have a PTAS? Note that no constant-factor, polynomial-time approximation
algorithm is even known for this problem as well as the (general) minimum-dilation graph
and spanning tree problems. Finally, can we devise fast exact algorithms?
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