
Source Code Independent Reverse Engineering

of Dynamic Web Sites

Technical Report B-04-10

Dirk Draheim, Christof Lutteroth
Institute of Computer Science

Freie Universität Berlin
Takustr.9, 14195 Berlin, Germany

draheim@acm.org lutterot@inf.fu-berlin.de

Gerald Weber
Department of Computer Science

The University of Auckland
38 Princes Street, Auckland 1020, New Zealand

g.weber@cs.auckland.ac.nz

June 2004

Abstract

This paper describes source code independent reverse engineering of dynamic web sites.
The tool Revangie builds a form-oriented analysis model solely from the usage of a web appli-
cation. The recovered models can be, for example, exploited for the purpose of requirements
engineering and load test development. Revangie can explore a given web application fully
automatically or can passively record its usages. The collected data, i.e., data about screens,
server-side programs, and system responsiveness, are analyzed in order to build a user inter-
face model. The paper presents several adequate screen classifications, which are utilized to
yield significant models.

1

Contents

1 Introduction 3

2 Using the Form-Oriented User Interface Model 4

3 The Reverse Engineering Process 5
3.1 The Crawl Mode . 5

3.1.1 Problems of Fully Automatic System Exploration 5
3.1.2 The Crawling Algorithm . 5
3.1.3 The Quality of Crawling . 7

3.2 The Snoop Mode . 7
3.3 The Guide Mode . 8

4 The Screen Classification Problem 8
4.1 The Lattice of Classifications . 8
4.2 Possible Screen Classifications . 10
4.3 Classification and Clustering . 12
4.4 Statistical Testing of Refinements . 13
4.5 Clustering with Significant Refinements . 13
4.6 Examples for Refinement and Coarsening . 14

4.6.1 Reconstruction of an Application Model . 14
4.6.2 Reconstruction of a User Model . 14

5 Related Work 14

6 Further Directions 15

7 Conclusion 16

2

Web Application

Angie

Revangie
Model Recovery

Angil
Load Test Tool

Angie
Generator

Click-Dummy

Annotated Angie

Figure 1: The Angie language related tool suite.

1 Introduction

This paper presents Revangie – a tool that is able to recover the model of a dynamic web interface
of a web site without looking at the source code. We chose to recover models independent of
source code because of the manifold of languages, platforms and architectures a dynamic web
site can be implemented in. Tools that perform source code dependent reverse engineering are
usually restricted to a certain language, platform etc., whereby Revangie is independent of all
those. Furthermore, the source code independent approach is a straightforward one, because it
is much easier to analyze HTML code than the generating code, whereas it is an essential claim
that the analysis of the generated HTML is sufficient to recover sophisticated models. It is not
only easier to analyze HTML code than the generating code, but more convenient, too, because
the HTML code can be explored through the single point of access of an HTTP port, whereas
the generating code can have a complex deployment structure. In the case that the source code is
inaccessible, analysis must be source code independent anyway, as it is the case in typical product
benchmarking efforts.

We explain the motivation for Revangie by describing its role in the Angie tool suite. Please
consider Fig. 1. Revangie is used to recover form-oriented models from a dynamic web site.
The textual description of this model in the language Angie [8] can be subsequently used for
forward engineering of click dummies, as they are conveniently used for requirements engineering,
or customizable systems, which can help in migrating to model-driven architecture. In addition to
this, Revangie can collect data about user behavior that can be used for load testing. It is further
work to provide the load test tool Angil that simulates real users on the basis of an annotated
version of the Angie language.

In Sect. 2, we provide a brief overview of form-oriented analysis [7, 5]. In Sect. 3, we describe the
different modes of operation of Revangie. Section 4 explores the screen classification problem. The
paper finishes with a discussion of related work, further directions and a conclusion in Sects. 5,6
and 7.

3

checkpw

login

home
buyBikes

cars

bikes

buyCars

buy

Figure 2: Form chart example.

2 Using the Form-Oriented User Interface Model

In order to perform coherent analysis, we need a model that describes the user interface of web
applications adequately. The form-oriented user interface model uses typed, bipartite state ma-
chines, in which one set of states denotes client pages and the other set server actions that generate
the pages. These graphs contain all the information of page diagrams, but in addition to this, they
model the relationship between server-side actions and pages. It is obvious, which form or link
on a page uses which server action and which server action generates which page. Note that the
pages in the model do not represent individual pages as seen by the user, but classes of pages of
which many instances may be generated by different server actions. We call the possible instances
of a page screens.

An important property of the model is its type system: actions as well as pages have a signature
which specifies a type for the data accepted by an action and a type for the data displayed on the
screens of a page. These signatures help us in determining which forms and links invoke which
actions. Furthermore, they help us in identifying similar actions and similar screens. An action
is uniquely identified by the program that is invoked, which is referenced in the URI, plus the
set of labels with which parameters are passed to it through the CGI. Both kinds of information
are contained in forms and links that use CGI. Therefore, an invocation of a server action can be
thought of as a method call, the URI of the CGI program being the method name and the set of
labels being the method signature. Following this metaphor, using a CGI program with different
sets of labels corresponds to method overloading.

For textual representation of such models, form-oriented analysis proposes the language Angie [8].
Small models can be visualized conveniently in so called form charts, in which pages are repre-
sented as bubbles and actions as rectangles.

The web application depicted in the form chart in Fig. 2 starts at client page ”login” which
should contain a form for submitting a user name and password to server action ”checkpw”. If
the submitted login information is invalid, the user is shown another instance of the ”login” page,
otherwise the user is forwarded to page ”home”. Here, options ”buyCars” and ”buyBikes” can
be chosen and the respective pages subsume all the possible screens showing lists of cars and
bikes, respectively. According to the form chart, both pages use the same action ”buy” to process
submitted data. This means that the same CGI program is used with the same parameter labels,
so the buying of a car is distinguished from the buying of a bike merely by the actual parameters.

In the context of reverse engineering, we can, as mentioned, identify the signature of an action
in HTML code and therefore the set of actions in our model could be accurately determined by
an exhaustive analysis of a system’s HTML screens. The signature of pages, however, cannot
generally be recovered from the HTML code. The difference between pages may be a purely
semantic one like in our example, where the pages ”cars” and ”bikes” show lists that may be
structurally identical. In order to distinguish pages precisely, we would have to look into the CGI
programs that generate them as, for example, it is done by the tool JSpick [4]. Consequently, a
main problem of client-side reverse engineering without the source code of the CGI programs is
the classification of screens into pages.

4

3 The Reverse Engineering Process

Revangie can work in different modes: the crawl mode, which works on the client side, and the
snoop mode, which works at any point in the communication line between client and server. When
Revangie is started, it must be told which mode it should use.

3.1 The Crawl Mode

The crawl mode works like an automated web browser: It uses an HTTP client to request pages,
submit values and analyze the trace of submitted values and visited pages. It starts at a specified
URL, retrieves the corresponding HTML screen and scans it for links, forms and some other tags.
As we have discussed in section 2, we can infer an action for each link and form. As we will see in
section 4, each screen, in turn, must be classified as being an instance of a certain page. In this
way, we can obtain information about which pages and actions are in the model, which action can
be invoked from which page and which page is generated by which actions.

3.1.1 Problems of Fully Automatic System Exploration

It would be naive to think that the analysis model of every non-trivial web application could be
reconstructed automatically. The problematic point is the data submitted on a page, which usually
has to suffice certain constraints and therefore, cannot be generated generically. Sometimes,
this data depends on the context or its history, e.g., email addresses, credit card numbers or
passwords. But still, there are web applications for which the crawl mode, which generates input
data randomly, can yield satisfactory results. Think, for example, of a search engine. It is
conceivable that the range of web-applications feasible for the crawler can be widened by the use
of simple heuristics which, for example, exploit the fact that certain field labels, e.g., ”surname” or
”email”, correspond to well-known data types. Note that we must not generate data for the hidden
parameters of forms and links. Here, we have to use the values provided by the web application
in order to guarantee consistent operation.

We cannot simply use a breadth-first or depth-first search of the bipartite graph that we are
constructing because most of the more sophisticated web applications keep track of sessions, i.e.,
the history of action invocations triggered by a single user. The permitted protocol of a session is
given by the sequence of screens as provided by the web server, and any deviation might cause an
error. Most people know that using the back and reload buttons of a browser in a form-oriented
system can cause errors due to the expiry of a page.

An important question for the crawl mode is how the choice for the next action in the automated
browser is made. Of course, we want to make the choice that is most likely to help us in the analysis,
i.e., that leads us to the discovery of a maximum of new pages and actions. But we cannot predict
which choice this will be, so we have to use heuristics like a usage counter for each form and link.
The ”least used” heuristic says that the form or link with the minimum usage counter is a good
choice.

3.1.2 The Crawling Algorithm

Putting it all together, this yields Algorithm 1 as the operational semantics of the crawl mode.
Procedure crawlAll simulates many single-user sessions successively by invoking procedure crawl
on page entry as long as a significant extension of the reconstructed model takes place. entry
is an artificial page which contains forms for all the actions that may serve as entry points into
the web application. Although page entry does not appear in the actual web application, it is
represented internally like any other page, only that it is marked in the model.

In order to stop exploration when no new parts of the web application are discovered any more,
we calculate the value α as a ratio of the number of iterations done in crawlAll to the number
of actions found in model, the global variable containing the reconstructed model. This gives us
the average number of actions discovered in a single simulated session; and once α drops below a

5

threshold Θ, we assume that the application has been explored sufficiently. We use the number
of actions and not the number of actions and pages because there is – in contrast to screens – a
limited number of actions in a web application, usually proportional to the number of conceptual
pages. The number of pages in the model depends on the way we classify screens and may grow
enormously, while the number of actions is well-defined. Think, for example, of a search engine:
the search action may lead to innumerable screens that may be hard to classify.

Algorithm 1 Crawl Mode
1: procedure CrawlAll
2: while α > Θ do
3: crawl(entry)
4: end while
5: end procedure

6: procedure Crawl(Page p)
7: while |p.forms| > 0 ∧ α > Θ do
8: for all Form f ∈ p.forms do
9: model← model ∪ {(p, inferAction(f))}

10: end for
11: f ∈ p.forms ∧ f .usages = min

f ′∈p.forms

∧feasible(f ′)

f ′.usages

12: if f = null then
13: break
14: end if
15: f.usages← f.usages+1
16: Action a←inferAction(f)
17: Set data← ∅
18: for all field ∈ f .fields do
19: value←generateValue(field)
20: data← data ∪ {(field.label, value)}
21: end for
22: s←invoke(a, data)
23: p′ ←classify(s)
24: p′.screens← p′.screens∪{s}
25: model ← model ∪ {(a, p′)}
26: p← p′

27: end while
28: end procedure

Procedure crawl simulates a single session which runs into a terminal set of states, i.e., a set of
pages and actions that cannot be left. The existence of terminal sets of states in a web application
is the reason that simulation of a single session is insufficient; a single session can only explore one
terminal set. We try to cover all the terminal sets by simulating multiple sessions.

In the main loop of procedure crawl, we iterate over page-action-page transitions, starting on
the page p given as argument. In the condition of the while-loop in line 7, we check if the page offers
any possibility of interaction at all; if not, crawl terminates. An HTML link can be represented as
a special case of an HTML form; therefore, the class that represents a link is internally a subclass
of class Form and if p contains no forms it does not contain links either. The other while-condition,
α > Θ, is similar to the one in procedure crawlAll and will be discussed later on. Next, we infer
the signature of an action for each of the forms on page p and add a corresponding page-action
transition to model. We have seen in section 2 that the signature of an action can be inferred
from any form; model represents the reconstructed model as a set of transitions between actions
and pages.

6

In line 11, we choose one form f out of all feasible ones that has a minimal usage counter,
thereby trying to maximize the likelihood of efficient exploration. A form is feasible if its action
does not lead us out of the application, i.e., onto other web sites. If there is no feasible form, that
is if f = null, the while-loop is left and crawl terminates. The actions of non-feasible forms in
the model are later on connected to another artificial page named exit. After incrementing the
usage-counter of the chosen form, we determine which action is invoked by f . In lines 17-21, we
generate a label-value pair for each field of f , so that we can submit this data and receive a new
screen s. We classify s into a page p′, which can be an existing page or a new one, and add s to
its screen set. We add the reconstructed action-page transition (a, p′) to model and prepare the
next iteration that uses p′ as starting point.

The second condition of the while-loop, α > Θ, is there to ensure that crawl terminates when
the terminal set of states it operates in seems to be sufficiently explored. Hereby, α is a value that
drops below a threshold Θ when crawl does not significantly extend the model any more, e.g.,

α :=
number of new actions√

number of while iterations
.

Similar to procedure crawlAll, α is the ratio of the number of new actions found in the session to
a term that grows with the number of iterations. Here, we use the square root of the number of
iterations done in the while-loop because we iterate over the edges of the model and the number
of states in a dense graph grows typically like the square root of its number of edges. In an
application with many forms, this prevents crawl from terminating too early.

3.1.3 The Quality of Crawling

The quality of the constructed model depends heavily on functions generateValue and classify. It
depends on generateValue how effectively user input is simulated and therefore how well the actual
set of pages and actions in the web application is covered; classify determines if the granularity of
the reconstructed model during exploration is adequate. This, in turn, also influences the efficacy
of the crawling process because it affects the heuristic for the selection of the next form to use:
A classification that is too fine leads to too much pages and thus too much forms in the model;
most usage counters will be zero for a long time, so the least-used heuristic does not help much.
A classification that is too coarse leads to too few forms and most usage counters will reach a
high value very soon. In both the extreme cases, the least-used heuristic is not much better than
random choice.

Classification of pages is not only, like depicted in the pseudo code, possible online, i.e., during
the process of exploration. We can also perform a new classification offline, i.e., in a separate
stage after the process of exploration. Therefor, we would record the exploration history as a set
of linear lists of alternating screens and actions. Then, the classification algorithm could operate
on the whole set of actions and screens a-posteriori and consequently use a wider range of analysis
techniques.

3.2 The Snoop Mode

The snoop mode collects data of actual sessions of a web application in order to analyze it and
reconstruct a model afterwards. It can either monitor the HTML communication of one or more
users by taking the role of a proxy server, or monitor the communication of all users by taking
the role of a facade to the web server. In the first case, the user has to configure his web browser
accordingly, in the latter case, the web server has to be reconfigured.

This mode allows us to collect realistic session data of one or more users. In the case of many
users, it can be utilized to determine certain user model parameters statistically. An analysis model
with this additional data, like distributions for the turnaround time, navigation probabilities or
sample input, is ideally fit for performing fully-automated realistic tests, especially load testing.

7

3.3 The Guide Mode

The guide mode tries to combine the advantages of crawl and single-user snoop mode: automation
and the possibility to enter form data manually. The algorithm is like in the crawl mode, but at
certain points, the user is asked to choose the form to use next and enter appropriate values. The
tool can ask for user input at every step, or only at steps that are hard to handle automatically,
like forms with input fields.

Besides for the selection of a form and the generation of input data, user input can also be
useful for screen classification. If classification seems ambiguous according to some measure, the
user can select to which page a screen should be added. If automatic classification produced
unsatisfactory results, screens can be reclassified by the user.

The guide mode uses an ordinary web browser for interaction and offers additional controls
for computer aided reverse engineering. The tool acts as a proxy for the web browser and dis-
plays session histories, usage counters for forms, screen classifications and a form chart of the
current model. It also suggests automatically generated data for input fields, thus making reverse
engineering faster.

4 The Screen Classification Problem

We need to classify each received screen to a page in order to build our model properly. As depicted
in Sect. 2, a page is characterized by the signatures of its targets, i.e., the actions that can be
invoked on it by the user, and the signature of the data presented on its screens. The signature
of an action is the URL of the CGI program and the set of labels used for transmitting values,
and since the code of the HTML screens contains all the information about the signatures of the
targets of corresponding pages, we can infer at least a partial key of the page for each screen. But
there is a wide variety of possibilities for screen classification. If, for example, a target’s URL has
the suffix .html and no parameters, we can conclude that it leads to a static page of which all
screens have to be equal by string equality. On the other hand, if a target action has parameters,
it is likely to generate screens with varying content that require more sophisticated techniques to
classify.

4.1 The Lattice of Classifications

Let us first look at the formal basis of classification. Formally, a classification is an equivalence
relation, i.e., a reflexive, transitive and symmetric binary relation which partitions a set into
disjoint subsets called equivalence classes. We denote the set of all equivalence relations over a
given set S by EQS .

We call a classification resp. equivalence relation A∈EQS a refinement of equivalence relation
B∈EQS , denoted by A�B, iff

∀x, y ∈ S : x ∼A y ⇒ x ∼B y

The above definition of refinement is natural because a refining classification is conservative with
respect to the refined classification, i.e., a refinement only further subdivides the classes of a given
classification. This is also neatly expressed by the fact that the defined refinement is equal to the
subset relationship between equivalence relations, i.e., the following holds

A�B iff A ⊆ B

For example, given a set of screens S ={a, b, c}, the Hasse diagram in Fig. 3 visualizes the partial
order (EQS ,�) of equivalence relations over S.

Similarly we can define true refinement �, coarsening �, and true coarsening � by:

A�B iff A ⊂ B,

8

a b

c

a b

c

a b

c

a b

c

a b

c

Figure 3: Cpo of equivalence relations.

A�B iff A ⊇ B,

A�B iff A ⊃ B.

We now define conjunction ∧ and disjunction ∨ of classifications. A classification identifies
elements of the set for which it is defined. Informally, a conjunction A∧B identifies those elements
that are identified by both A and B, whereas a disjunction A ∨ B identifies those elements that
can be identified by means of A or B. Conjunction is defined by set intersection on equivalence
relations; however, disjunction cannot be defined analogously just by set union, but must be
defined as transitive closure of set union.

A∧B =def A ∩B

A∨B =def transitive-closure(A ∪B)

The partial order EQS together with conjunction and disjunction, i.e., (EQS ,∧,∨), form a com-
plete lattice.

A notion of classification assigns to each set a classification of this set, i.e., an equivalence
relation on this set. Typically, only sets that adhere to certain criteria are considered – we can
formalize this by considering subsets S of a given base set B only. The given context criteria
can be exploited to argue about the refinement relation between notions of classifications defined
below. All this means, that a notion of classification is a dependent product with respect to a
family of sets and equivalence relations over these sets.

C = (CS :EQS)S⊆B

We now define refinement, disjunction and conjunction for notions of classification:

(CS)S⊆B�(DS)S⊆B iff ∀S⊆B.CS�DS,

9

smallcoarse-grainedgeneral

coarseningrefinement

largefine-grainedspecific

model size
model

granularity

classification

characteristics

smallcoarse-grainedgeneral

coarseningrefinement

largefine-grainedspecific

model size
model

granularity

classification

characteristics

Figure 4: Terminology for classification.

(CS)S⊆B∧ (DS)S⊆B =def (CS∧DS)S⊆B,

(CS)S⊆B∨ (DS)S⊆B =def (CS∨DS)S⊆B.

Also the set NoCB of notions of classification with respect to a base set B together with disjunction
and conjunction, i.e., (NoCB ,∧,∨), form a complete lattice.

We now define the concept SNoCB of standard notions of classification with respect to base
set B. Informally, a standard notion of classification is conservative with respect to set operations
on the underlying set of the equivalence relations.

C ∈ SNoCB iff ∀S, T ⊆B.∀x, y∈S∩T.x∼CS y ⇔ x∼CT y

For standard notions of classification, refinement can be defined more directly as the refinement
on the base set classification because the following holds:

∀S⊆B.CS�DS ⇔ CB�DB.

In the sequel, we use the terms notion of classification and classification synonymously. The
terminology for classification used in our paper is defined in Fig. 4. It shows the effect of refinement
and coarsening on classification characteristics, model granularity, and model size.

4.2 Possible Screen Classifications

Now, let us consider different notions of screen classification:

Trivial identity is the coarsest possible equivalence relation. All screens are equivalent. It is
practically unimportant, but forms the top (�) element of our lattice.

Screen identity is the finest possible equivalence relation for screen classification and conse-
quently forms the bottom (⊥) element. Each screen that is received by a web client gets its
own page, even when two screens have the same HTML code.

Textual identity groups screens with the same HTML code into the same page.

Source identity groups screens into the same page that were generated by the same action.

Targets identity groups screens with identical targets signature, i.e., the same set of signatures
of the server actions targeted by a screen. Targets identity can be coarsened to form targets
identity by excluding the signatures of links from the targets signature, or orthogonally,
coarsened to internal targets identity by excluding forms and links that target external
actions, like links to other web sites.

10

screen id ⊥

textual id

patterns idsource id title idtargets id

targets id
∧

title id

targets id
∨

title id

trivial id T

Figure 5: Lattice of notions of screen classification.

Title identity groups screens with identical HTML titles.

Pattern identity groups screens that match a user-defined pattern. This may be a textual
pattern, a purely syntactical pattern or a mixture of both; regular or, at most, context-free
patterns are usually sufficient.

Similarity or dissimilarity of screens according to some textual or structural distance metric can
be used to cluster them into pages (e.g., [17]). A similarity measure suitable for clustering
can also be created by combination of multiple similarity indicators, like any of the discussed
ones, which can be combined, for example, by a weighted sum.

The relationship between the different notions of classifications is illustrated in Fig. 5. Note
that Fig. 5 is not a complete visualization of the lattice of notions of screen classification because
only exemplary disjunctions resp. conjunctions are included.

By combining and configuring classification techniques appropriately, it is possible to recon-
struct an expressive model with adequate page granularity. For a maximum of flexibility, Revangie
offers a system of configurable plug-ins for screen classification, with a generic default plug-in.
Note that it depends on the intended usage of a model which model granularity is adequate, i.e.,
a given model granularity must be judged with respect to an external criterion. For example, tar-
gets identity can be considered to fit best in load testing scenarios, whereas textual identity is the
classification of choice for static HTML pages. Targets identity is an important basic classification
because it yields the smallest possible form-oriented analysis models without enabling conditions
for targets, i.e., it yields a model where all the screens of a page offer the same server actions for
interaction. We discuss this topic further in Sect. 4.6.

Our classification apparatus is especially expressive because of the notions of conjunction and
disjunction. Potential candidates for conjunction are, for example, targets identity and title, or
targets identity and pattern identity. Please consider the classifications resulting from conjunction
and disjunction in the ACME webshop example of Fig. 61. The example, with its many different

1The figure shows a modified form chart diagram where single, completely unclassified screens are drawn instead
of client pages. Therefore, dashed lines are used instead of solid ones for the bubbles.

11

ACME events

ACME bargains

ACME Specials
1

ACME Specials
2

home

ACME Welcome
3

ACME Welcome
4

view products

Hardware
5

Drugs
6

Food
7

title: 1-2 3-4 5 6 7 8
source: 1 2 3-4 5-6-7 8
targets: 1-2 3-4 5-6 7-8
source or title: 1-2 3-4 5-6-7 8
targets or title: 1-2 3-4 5-6 7-8
source or targets: 1-2 3-4 5-6-7-8
source and title: 1 2 3-4 5 6 7 8
targets and title: 1-2 3-4 5 6 7 8
source and targets:1 2 3-4 5-6 7 8

non-food food

Goodies
8

view goodies

Figure 6: Example conjoined and disjoined classifications.

classifications, aims to clarify that there is no single notion of correct model granularity. All the
classifications correctly group screens 3 and 4, but not all separate 1 and 2 although they are
semantically different. All the screens 5 to 8 display different kinds of products, so it would be
thinkable to separate them, like title identity does. It might also be more appropriate to classify
them according to their targets identity, so that only food and non-food products are distinguished.

4.3 Classification and Clustering

Every classification can be reformulated as a clustering according to some metric δ, with δ being a
binary function on screens that evaluates to a positive real number called distance. For purely logic
predicates like the identity of targets or titles, corresponding metrics would produce a distance
of zero iff the predicate is true and some other fixed value if not. If the metric has a range that
encompasses more than two distance values, as is the case for dissimilarity measures, i.e., if the
answer of δ whether two screens belong to the same page is fuzzy, we need to use a clustering
method. Such a method partitions a set of objects – in our case, the screens – into clusters which
correspond to the equivalence classes of an equivalence relation – the pages, in our case. A large
variety of such methods exists; see, for example, [12].

Most clustering methods allow us to choose the number of clusters, which means in our case,
the granularity of the model. This allows us also to let the user set a preferred model size and
calculate a model that fits that size best. But there are also useful heuristics for determining an
optimal model size: it is reasonable to assume that the fan-out of an action has a small maximum,
i.e., that an action generates only a few conceptually different pages, e.g., a page that displays and
requests some information and a page that shows some error message if its input was invalid. If
the fan-out of an action exceeds the maximum, we can assume that the clustering of its generated
screens is too fine and coarsen the clustering, e.g., by merging clusters. If we assume that there is
some typical fan-out value for an action, e.g., that it generates either a proper result or an error,
we can also steer the clustering in a way that this value is approximated best. In the same way,
we can also assume that a page has a limited fan-in, i.e., a limit on the actions that generate
it. Remember that a link is represented by an action, not a page, so that if a link is on many
screens of a web application, the corresponding action has a high fan-in, but not the page. That
two different actions generate the same conceptual page is rare but occurs; so a maximum on the
fan-in of a page can be used to steer the clustering, too.

12

4.4 Statistical Testing of Refinements

We introduce statistical methods in order to refine an equivalence relation on screens. After
running Revangie in the snoop mode, we have a set S of screens. Furthermore, we may find a
certain criterion suitable for distinguishing conceptually different pages. A good criterion is, for
example, the target usage frequency distribution of a page, i.e., the number of screens for each
target in which the respective target was invoked by a user. It is a natural assumption that pages
with different usage patterns are conceptually different, and therefore, we look for classifications
that partition S into pages with different usage patterns well.

We might want to know, for example, if classification by screen titles helps to distinguish pages
that are used differently. In terms of statistics, every screen has random variables target and title,
with target being the action that was invoked from that screen. In order to determine if title helps
us to distinguish between different usages, we test if target depends on title. If so, we refine our
classification by intersecting with title identity. A standard method used for testing dependency
of random variables is Pearson’s chi-square [13].

4.5 Clustering with Significant Refinements

We introduce a clustering method that uses Pearson’s chi-square test as described in Sect. 4.4.
Algorithm 2 works the following way: procedure cluster gets as input a classification, i.e., an
equivalence relation, on the set S of all screens. It iterates over different other equivalence relations
B on S, like target identity or title identity, and conjoins the current classification A with B using
operator ∧∗.

Algorithm 2 Statistical clustering of screens.
1: procedure Cluster(EQS A)
2: for all B ∈ {targets id, title id, ...} do
3: A← A ∧∗ B
4: end for
5: end procedure

6: function ∧∗(EQS A, EQS B)
7: Set P ← S/(A ∧B)− S/A
8: for all p1, p2 ∈ P, p1 �= p2 do
9: if ¬χ2(p1, p2)∗ then

10: P ← (P − {p1, p2}) ∪ {p1 ∪ p2}
11: end if
12: end for
13: S/A′ = (S/(A ∧B) ∩ S/A) ∪ P
14: return A′

15: end function

The conjunction ∧∗ does not work like ordinary conjunction as defined in Sect. 4. Before
splitting up a page cluster in A, it tests if the split leads to conceptually different subclusters.
That is, it may preserve certain parts of A that the ordinary conjunction would take away:

A ⊇ (A ∧∗ B) ⊇ (A ∧B).

Let us consider now how ∧∗ works. In the following, we will use the terms equivalence class
and cluster synonymously. In line 7, S/(A ∧ B) denotes the quotient of set S of all screens with
equivalence relation (A∧B), i.e., the set of clusters that S is partitioned into by (A∧B). In order
to find out which splits are new, i.e., done by B, we remove the clusters already produced by A,
S/A. Now, P contains the new clusters that were created by conjoining A with B.

In the loop, we choose two different clusters p1 and p2 in P and test for all screens in p1 ∪ p2

if the random variable ”cluster of the screen” with possible values {p1, p2} depends on a random

13

variable that can be reasonably assumed to distinguish conceptually different screens, like usage
(see Sect. 4.4). If the χ2-test does not signify dependence, ¬χ2(p1, p2)∗, we reunite the two clusters
in P . In that way, we iterate over all pairs of clusters. If equivalence relation B proves useless
for distinguishing conceptually different screens, all clusters are reunited and A is not refined. In
line 13, we reconstruct the desired equivalence relation A′ from the cluster set P united with the
clusters that are in A as well as A ∧B, i.e., (S/(A ∧B) ∩ S/A) ∪ P .

4.6 Examples for Refinement and Coarsening

We identify two main motivations for reverse engineering a web application with Revangie: the
creation of a model of the application itself for the purpose of product benchmarking [21] or re-
engineering and the creation of a model of its users for the purpose of testing the application, esp.
load testing. In the following, we will, for each of the motivations, look at cases where refinement
or coarsening of the model is desirable.

4.6.1 Reconstruction of an Application Model

For the reconstruction of an application model, there is not a single recipe for screen classification.
Generally, classification by targets identity is a good starting point but usually either too fine or
too coarse. Consider, for example, the dynamic pages of a content-managed information system
like the portal of an online newspaper. The start page of the newspaper may contain summaries
of the latest articles with links to them, and although many different screens are instances of this
conceptual page, they may differ heavily in the links and therefore in their targets signature. In
this case, a good choice for coarsening the classification might be form targets identity. On the
other hand, there may be conceptually different pages with the same targets signature, e.g., a
page in a web shop to view articles and a conceptually different one, although the same in targets
identity, to view special offers. In such cases, it can be useful to conjoin another classification like,
for example, title identity. For some systems, it may be useful to readjust the classification for
certain pages a-posteriori.

4.6.2 Reconstruction of a User Model

Reconstruction of a user model requires that a sufficient amount of session data has been collected
in the snoop mode. The first natural classification is that by targets identity because, in a user
model, we want to distinguish pages by the way they are used. Furthermore, we can use the
clustering technique described in 4.5 with target choice or user response time as second random
variable in order to determine a clustering that distinguishes screens with different user behavior
well. Consequently, if screens are equivalent with respect to user behavior, they can be grouped
in a common page, but classifications that group screens with different user behavior have to be
refined.

5 Related Work

There are a couple of elaborated approaches [15, 11, 10, 9, 14, 1] that analyze source code to
recover [3] a design or analysis model of the considered system. The motivation for these systems
may range from pure system navigation visualization over maintainability support to the recovery
of high-level architectural descriptions. Consider the tool presented in [11, 10, 9] as a representative
example for this technology class. The tool analyses source code and pages of a web application
and generates an architecture diagram that visualizes the interactions between static pages, active
ASP or JSP pages and other software components by arrows. A similar support is offered by
the tool WARE (Web Application Reverse Engineering) [14] for ASP and PHP based systems.
Thereby, flat information about actual form parameters is recovered by this tool, too. A technique
for recovering navigational structure and a conceptual model from a web application without tool
support is described in [1].

14

VAQUISTA [20, 19] offers support for the static analysis of HTML pages. However, its goal is
not to reverse engineer a whole web site but to reverse engineer the user interface from individual
HTML pages in order to make them accessible from other contexts, i.e., device independency is
targeted. An example for a tool that can track the change history of a web site is given in [2].

A tool for source-code independent analysis of web applications is ReWeb [16, 18]. An early
version of ReWeb was able to recover a navigational model of a completely static web site. However,
already in this early contribution the possibility to recover models for dynamic web pages solely
by analyzing the generated HTML code has been envisioned. In [18], there is an outline of the
new ReWeb features for the analysis of dynamic web sites. ReWeb is different from Revangie
with respect to motivation, input simulation, server action classification, and notions of screen
classifications. The motivation for the dynamic features of ReWeb is regression testing in web site
evolution scenarios. ReWeb works similar to our crawl mode, but input values must be given before
it is started. This means that an initial knowledge of the system is required already before ReWeb
can be fully utilized. However, the choice of values can be challenging because inappropriate
values can lead to partial models or duplicate pages in the model. ReWeb draws a distinction
between implicit and explicit state models. The explicit state model regards each invocation of
a CGI program with new values as a new server action. The Revangie state model is rather an
implicit state model in the sense of ReWeb; however, the actions are distinguished with regard
to their inferred types. The explicit type model has a couple of flaws: interaction state cannot
necessarily be distinguished through hidden parameters because recovered hidden parameter values
may loose their validity over time. When ReWeb is used on a web application, hidden parameters
that are generated by the system are not propagated properly but overwritten by the ones in the
explicit model, which may cause dynamic errors. The distinction of actions according to hidden
parameters will lead to bloated models if hidden parameters are used for session management.
ReWeb offers three notions of classification for grouping screens: textual identity, syntactical
identity, and identity with respect to similarity metrics. Syntactical identity groups screens that
have identical abstract syntax trees, i.e., equal up to textual content of tags. However, we feel
syntactical identity is not the appropriate generalization of textual identity: consider the insertion
of a new row into a table, which causes the resulting screens to be different with respect to
syntactical identity, although they might very well be instances of the same conceptual page. In
this important example, syntactical identity is no improvement on textual identity. However, the
example can be dealt with very elegantly by means of syntactical pattern identity.

6 Further Directions

Once an adequate model for a web site is reconstructed, it may be desirable to extract certain
features in order to make it clearer or facilitate subsequent redesign. Like many other software
systems, also web sites usually contain aspects, i.e., parts that cross-cut the general structure. A
common example for aspects in web applications are menus, which are important for the navigation
on a web site, and it is possible to extract such features from the recovered model automatically.
For example, forms and links that occur on several pages can be extracted and modeled separately
with so called state sets, thereby making changes much easier and allowing users to view parts of
the system independently of the whole without disturbing its general structure. For an account
on how this can be done using form-oriented analysis, see [6].

Furthermore, we are about to implement Angil – a tool that uses the models created by
Revangie in order to perform realistic load testing of web applications. The models used by Angil
are annotated by additional data about typical user behavior, like transition probabilities and user
response times. This data can be collected by Revangie in the snoop mode.

15

7 Conclusion

We introduced Revangie – a tool for reverse engineering web applications that reconstructs analysis
models based on the concepts of form-oriented analysis. Revangie can operate in three different
modes: the crawl-mode, which works automatically, the snoop-mode, which is user-driven, and the
guide-mode, which works semi-automatically, combining the advantages of the other two modes.
We described how these modes work, what problems come up when reverse engineering a web
application, and what solutions we found. Especially, the problem of screen classification was
discussed and its theoretical background described. We introduced a statistical test for determining
if a classification leads to significant differences in the transition probability distributions of pages
or other random variables of interest and described how this test can be exploited for screen
clustering. Revangie is built on solid theoretical grounds and offers robust solutions to common
problems.

References

[1] G. Antoniol, G. Canfora, G. Casazza, and A. D. Lucia. Web site reengineering using RMM.
In International Workshop on Web Site Evolution, pages 9–16, March 2000.

[2] D. Budgen and S. Burgees. A simple tool for temporal indexing of hypertext documents.
Computer, 31:52–53, December 1998.

[3] E. J. Chikofsky and J. H. Cross. Reverse engineering and design recovery: A taxonomy. IEEE
Software, pages 13–17, January 1990.

[4] D. Draheim, E. Fehr, and G. Weber. JSPick - a server pages design recovery. In 7th European
Conference on Software Maintenance and Reengineering, LNCS. IEEE Press, March 2003.

[5] D. Draheim and G. Weber. Modeling submit/response style systems with form charts and
dialogue constraints. In Workshop on Human Computer Interface for Semantic Web and
Web Applications, LNCS 2889. Springer, 2003.

[6] D. Draheim and G. Weber. Storyboarding form-based interfaces. In INTERACT 2003 - Ninth
IFIP TC13 International Conference on Human-Computer Interaction. IOS Press, 2003.

[7] D. Draheim and G. Weber. Form-Oriented Analysis - A New Methodology to Model Form-
Based Applications. Springer, September 2004.

[8] D. Draheim and G. Weber. Specification and generation of model 2 web interfaces. In APCHI
2004 - 6th Asia-Pacific Conference on Computer-Human Interaction, LNCS. Springer, June
2004.

[9] A. E. Hassan and R. C. Holt. Towards a better understanding of web applications. In WSE
2001: International Workshop on Web Site Evolution, November 2001.

[10] A. E. Hassan and R. C. Holt. Architecture recovery of web applications. In ICSE 2002:
International Conference on Software Engineering, May 2002.

[11] A. E. Hassan and R. C. Holt. A visual architectural approach to maintaining web applications.
Annals of Software Engineering, 16, 2003.

[12] K. Jajuga, A. Sokoowski, and H. H. Bock. Classification, Clustering and Data Analysis.
Springer, August 2002.

[13] E. L. Lehmann. Testing Statistical Hypotheses. Springer, March 1997. 2nd Reprint edition.

[14] G. Lucca, A. R. Fasolino, F. Pace, P. Tramontana, and U. de Carlini. Ware: A tool for the re-
verse engineering of web applications. In Sixth European Conference on Software Maintenance
and Reengineering. IEEE, 2002.

16

[15] S. Mancoridis, T. S. Souder, Y.-F. Chen, E. R. Gansner, and J. L. Korn. Reportal: A web-
based portal site for reverse engineering. In 8th Working Conference on Reverse Engineering,
pages 221–230. IEEE Press, November 2001.

[16] F. Ricca and P. Tonella. Analysis and testing of web applications. In ICSE’2001 - Interna-
tional Conference on Software Engineering, pages 25–34. IEEE Press, May 2001.

[17] F. Ricca and P. Tonella. Using clustering to support the migration from static to dynamic
web pages. In 11th International Workshop on Program Comprehension, pages 207–216, May
2003.

[18] P. Tonella and F. Ricca. Statistical testing of web applications. Software Maintenance and
Evolution, 16(1-2):103–127, April 2004.

[19] J. Vanderdonckt and L. Bouillon. Retargeting of web pages to other computing platforms
with VAQUISTA. In 9th Working Conference on Reverse Engineering, pages 339–338. IEEE
Press, November 2002.

[20] J. Vanderdonckt, L. Bouillon, and N. Souchon. Flexible reverse engineering of web pages
with VAQUISTA. In 8th Working Conference on Reverse Engineering, pages 241–248. IEEE
Press, November 2001.

[21] G. H. Watson. Strategic benchmarking - How to rate your company’s performance against the
world’s best. John Wiley, 1993.

17

