
Reasoning Paradigms for OWL Ontologies

Jing Mei
Department of Information Science

Peking University
Beijing 100871, China

email:mayyam@is.pku.edu.cn

Elena Paslaru Bontas
Freie Universität Berlin
Institut für Informatik

AG Netzbasierte Informationssysteme
Takustr.9, D-14195 Berlin, Germany

email:paslaru@inf.fu-berlin.de

November 29, 2004

Technical Report B-04-12

Abstract

Representing knowledge in OWL provides two important limitations;
on one hand efficient reasoning on real-world ontologies containing a large
set of individuals is still a challenging task. On the other hand though
OWL offers a reasonable trade-off between expressibility and decidability,
it can not be used efficiently to model certain application domains. In
this paper we give an overview of some of the most relevant approaches in
this domain and present OWL2Jess, which is a comprehensive converter
tool enabling Jess reasoning over OWL ontologies.

i

CONTENTS 1

Contents

1 Introduction 2

2 Preliminary 2
2.1 Classical Rule based Languages 3
2.2 Rule Languages for the Semantic Web 4

3 Reasoning Tools for the Semantic Web 5
3.1 Rule Engines . 5

3.1.1 Jess . 5
3.1.2 XSB . 6
3.1.3 Cwm . 6
3.1.4 RuleML Engines . 6

3.2 Rules-Enabled Ontology Engineering Platforms 7
3.2.1 KAON . 7
3.2.2 FLORA-2 . 7
3.2.3 Instance Store . 7

3.3 OWL Reasoners . 8

4 OWL2Jess 9
4.1 Transforming OWL to Jess . 10
4.2 Variants of OWL2Jess . 10
4.3 Some Issues about the OWL to Jess Transformation 11

5 Entailment Rules 12
5.1 RDF Semantics . 12

5.1.1 rdf:type . 12
5.1.2 rdfs:domain . 12
5.1.3 rdfs:range . 13
5.1.4 rdfs:subPropertyOf . 13
5.1.5 rdfs:subClassOf . 13

5.2 OWL Semantics . 14
5.2.1 OR condition . 14
5.2.2 EQUIVALENT condition 15
5.2.3 owl:complementOf . 16
5.2.4 owl:intersectionOf . 16

5.3 owl:unionOf . 17
5.4 owl:oneOf . 17

5.4.1 owl:allValuesFrom . 18
5.4.2 owl:someValuesFrom . 18
5.4.3 owl:hasValue . 19
5.4.4 owl:cardinality . 19

6 Evaluation and Future Work 20
6.1 Test Cases . 20
6.2 Related work . 20
6.3 Future work . 21

1 INTRODUCTION 2

1 Introduction

The Web Ontology Language OWL[PSHH04] has became a W3C Recommenda-
tion in February 2004, and building OWL ontologies is supported by common
ontology editors. However representing knowledge in OWL provides two im-
portant limitations; on one hand efficient reasoning on real-world ontologies
containing a large set of individuals is still a challenging task. On the other
hand though OWL offers a reasonable trade-off between expressibility and de-
cidability, it can not be used efficiently to model certain application domains.

Therefore the Semantic Web community tries to overcome these drawback
by proposing two directions in dealing with OWL and corresponding reasoning
engines: efficient reasoning over individuals could be achieved by identifying
fragments of OWL which can be easily translated to F-Logic, while the limited
expressibility is extended by Semantic Web-enabled rule languages.

In fact, in classical Artificial Intelligence, both standard ontology languages,
which inherit from frame-based systems or semantic networks, and rule lan-
guages are similar FOL-related formalisms in Knowledge Representation. Rule-
based languages rely on predicate logics, taking advantage of its well-defined
semantics and well-understood and powerful inference mechanism[BG94]. On-
tology languages like OWL or DAML+OIL rely on F-Logic and Description
Logics and can be used for certain modelling tasks in a more intuitive man-
ner. Besides, Description Logics do provide efficient computational properties
w.r.t. to automatic classification and consistency checking. The semantic dis-
crepancy of ontology languages and rule-based languages is still an open issue.
Each representation paradigm should be used for the particular types of knowl-
edge representation and reasoning tasks it better fits while hybrid reasoning
frameworks could be a solution to the heterogeneous representation.

In this report we propose OWL2Jess, a hybrid reasoning framework (Figure-
1), which puts these ideas into practice. The tool can be used to fill the gap
between OWL and Jess1, the Java Expert System Shell, a Java-based rule engine
and scripting environment. While domain knowledge is still modelled with
OWL, using common ontology editors, we transform this OWL formalism to
Jess facts using XSL transformations on the XML-syntax of OWL and represent
additional rules in Jess. In addition to our predefined entailment rules on the
basis of RDF semantics[HM04] and OWL (RDF-compatible) Model-Theoretic
Semantics[PSHH04], we run the Jess rule engine to implement the reasoning
services.

Note that the predefined rules are used to check the consistency, to compute
the taxonomic classification, the characteristics of RDF/OWL vocabulary etc.
The inferred Jess assertions are helpful for the ontology engineer to evaluate
and refine the original OWL ontology.

2 Preliminary

Before describing the OWL2Jess tool we give an overview of several prelimi-
naries, necessary to explain and motivate our approach. First we will give a
short introduction to rule-based languages, including the Rule Markup Lan-
guage(RuleML) and the Semantic Web Rule Language(SWRL) whose initiative

1http://herzberg.ca.sandia.gov/jess/

2 PRELIMINARY 3

Figure 1: OWL2Jess Model

are offer a Semantic Web compatible representation of rules on XML basis.
Further on we present several tools and reasoning engines for common rule lan-
guages and stress the possibility of using them on the Semantic Web.

2.1 Classical Rule based Languages

In rule-based languages, terms are built as in the corresponding first-order lan-
guage, and atoms have the form p(t1, · · · , tn), where the ti’s are terms and p is
a predicate symbol of arity n. A literal L has either the form A or ¬A where A
is an atom and ‘¬’ is a logical connective called classical negation.

A program is a finite set of rules having the form (*):

l0 ∨ · · · ∨ lk ← lk+1 ∧ · · · ∧ lm∧ ∼ lm+1 ∧ · · · ∧ ∼ ln (∗)

- if li’s are literals, it is an AnsProlog+(∨),+(¬) program.

- if k = 0, li’s are atoms, it is an AnsProlog program, i.e., a normal (or,
general) program.

- if k = 0,m = n, li’s are atoms, it is an AnsProlog−(∼) program, i.e., a
definite program, and the rule is known as a Horn rule.

• equality-free rule: the equality predicate does not appear in it.

• safe rule: all variables in the head also occur in the body.

• Datalog: a safe Horn rule with no logical functions.

‘∼’ is a logical connective called negation-as-failure (naf) or default negation,
which should be distinguished from the classical ‘¬’. By the epistemic inter-
pretation of logic programs, ‘¬p’ can be interpreted as “believe that p is false”
while ‘∼ p’ as “there is no reason to believe in p”.

The semantics of standard rule languages are closely related to Herbrand
model semantics. Answer set/stable model semantics is a good choice when

2 PRELIMINARY 4

negation-as-failure is taken into account(i.e., n>m). Every answer set/stable
model is a minimal Herbrand model, but not all minimal Herbrand models are
answer sets/stable models[BG94].

Several rule languages and reasoning frameworks have emerged in the area
of logic programming. Prolog is a generalized name which is short for PRO-
gramming in LOGic. AnsProlog(or Answer Set Programming) is a logic pro-
gramming language based on answer sets/stable model semantics. The infer-
ence mechanism of Prolog is based upon Robinson’s resolution principle, while
AnsProlog takes aim at computing models and answer sets, rather than reso-
lution refutation proofs, i.e., problem solutions are represented by answer sets
of the program, but not by variable substitutions[MLYL04]. F-logic[KLW95]
(Frame Logic) was proposed to provide a logical foundation for frame-based
and object-oriented languages for data and knowledge representation. It has
features including object identity, complex objects, inheritance, polymorphic
types, query methods, encapsulation etc. It is suitable for defining, querying
and manipulating database schema. In a sense, F-logic stands in the same rela-
tionship to the object-oriented paradigm as classical predicate calculus stands
to relational programming.

2.2 Rule Languages for the Semantic Web

The Rule Markup Initiative2 is taking steps towards defining a shared Rule
Markup Language(RuleML), permitting both forward (bottom-up) and back-
ward (top-down) rules in XML for deduction, rewriting, and further inferential-
transformational tasks. Their main objective is to provide a basis for an inte-
grated rule-markup approach that will be beneficial for Semantic Web appli-
cations. The RuleML core language can serve as a specification for immediate
rule interchange and can be gradually extended.

The Specification of RuleML 0.87, which has been released recently, starts
with Datalog to test and refine some principal strategy, and then extends the
core language to further declarative rules as allowed in (equational) Horn logic.
Corresponding to Semantic Web, a URL/URI module is also introduced, and
the ‘UR’-Datalog join of both of these classes permits inferences over RDF-like
‘resources’ and can be re-specialized to RDF triples. The family of RuleML rule
languages is illustrated in Figure-2.

Note that the XML Schema negation module, though provided in the spec-
ification of RuleML 0.87, is not part of Figure-2. This negation module defines
the classical negation ‘Neg’ and the negation-as-failure ‘Naf’. Comparing to the
form (*), it firstly makes sure of being safe and equality-free as well as having
no functions. Further on by redefining the Datalog module, the XML Schema
‘negdatalog’ serves as the form (*) where k = 0,m = n, li’s are literals, ‘nafdat-
alog’ as the form (*) where k = 0,m ≤ n, li’s are atoms, and ‘nafnegdatalog’ as
the form (*) where k = 0,m ≤ n, li’s are literals.

Recently, First-Order-Logic RuleML (FOL RuleML) has been released, which
is syntactically characterized by explicit quantifiers and head disjunctions, as
well as equivalence and negation. On the other side, SWRL[HPSB+04] has
been proposed as an extension of the OWL language to include Horn-like rules.
SWRL FOL[PS04] is a SWRL extension to First-Order Logic. SWRL FOL and

2http://www.ruleml.org/

3 REASONING TOOLS FOR THE SEMANTIC WEB 5

Figure 2: RuleML Modularization

FOL RuleML can be joined to SWRL FOL RuleML by either adding RuleML
extensions such as n-ary relations to SWRL FOL or by adding SWRL extensions
such as data-valued properties to FOL RuleML.

3 Reasoning Tools for the Semantic Web

There are two groups of currently commercially important rule-based systems.
One group primarily employs forward chaining, and their applications heavily
rely on their capabilities for procedural attachments. Production rule systems
descended from OPS5 as well as event-condition-action (ECA) rule systems are
the representatives of this so-called ”reactive” category of systems. The other
group utilizes backward chaining, i.e., query-answering, and is sometimes called
“derivational”. This group is mainly comprised of Prolog systems, together with
SQL-type relational database systems, whose core are relational algebra and
Datalog[GGF02]. Further systems support both forward chaining and backward
chaining. In the following, we will give a rough description of some systems
without a strict distinction of their types.

3.1 Rule Engines

3.1.1 Jess

Jess3(Java Expert System Shell),originally inspired by the CLIPS expert system
shell and the CLIPS language(C Language Integrated Production System) is a
productive development and delivery expert system tool. It provides a complete
environment for the construction of rule and/or object based expert systems.
Like CLIPS, Jess uses the Rete (Latin for “net”) algorithm[For82] to process
rules, whose main idea is to improve the speed of forward-chained rule systems
by limiting the effort required to recompute the conflict set after a rule is fired.
However, Jess also adds many features to CLIPS, including backwards chaining,
working memory queries, and the ability to manipulate and directly reason
about Java objects. In short, Jess has grown into a complete, distinct, dynamic
environment of its own, with powerful Java scripting capabilities.

3http://herzberg.ca.sandia.gov/jess/

3 REASONING TOOLS FOR THE SEMANTIC WEB 6

In Jess, a rule consists of a left-hand side(LHS), the symbol ”⇒”, and a
right-hand side(RHS), in that order. The LHS is made up of zero or more
conditional elements, while the RHS consists of zero or more function calls. A
conditional element is either a pattern, or a grouping construct like ‘and’, ‘or’,
or ‘not’. The conditional elements are matched against Jess’s working memory.
When they all match, and if the engine is running, the code on the rule’s RHS
will be executed. Essentially, a Jess function is a Java method that gets called
as a procedure, rather than a true constructor.

Comparing to the above form (*), a Jess program is similar to a general
program (i.e., k = 0,m ≤ n, li’s are atoms) where the ‘not’ conditional element
acts as negation-as-failure. However, Jess does not apply any answer set/stalbe
model semantics. Furthermore, although more than one elements are permitted
in the RHS of a Jess rule, it just means l0 ∧ · · · ∧ lk but not l0 ∨ · · · ∨ lk, since
all rather than one of these function calls would be executed.

3.1.2 XSB

XSB4 is a Logic Programming and Deductive Database system, and it extends
Prolog with new semantic and operational features, mostly based on the use
of Tabled Logic Programming or tabling. Consequently, it was also named
after Tabled Prolog. XSB can be used as a Prolog system since it provides
all the functionality of Prolog. Further on XSB is based on tableaux calculus,
which provides termination to various classes of programs including definite
programs(also called Horn Clause Programs) and normal programs. Besides,
both backtrackable and non-backtrackable updates to asserted code are included
in XSB.

3.1.3 Cwm

Cwm5 is a general-purpose data processor for the Semantic Web, which is part of
SWAP (Semantic Web Application Platform). Cwm is a forward chaining rea-
soner which can be used for querying, checking, transforming and filtering infor-
mation. Its core language is RDF, extended to include rules. It uses RDF/XML
or RDF/N3 serializations as required. We note that Cwm was designed as a
proof of concept for the standard Semantic Web layered architecture. Therefore
the implementation of the reasoner does not particularly focus on scalability or
performance issues for large data sets or rule sets as in real-world applications.

3.1.4 RuleML Engines

Mandarax6 was implemented as the first complete input-processing-output en-
vironment for RuleML. In Mandarax, rule bases can be made persistent using
the XKB module which stored rules and other knowledge in a format similar
to RuleML, and export and import of RuleML rule bases are also supported.
Being pure OO, Mandarax is an open source java class library for deduction
rules, and it is based on backward reasoning. jDREW7 also provides modules
to process rules in RuleML format, and it is an deductive reasoning engine for

4http://xsb.sourceforge.net/
5http://www.w3.org/2000/10/swap/doc/cwm.html
6http://mandarax.sourceforge.net/
7http://www.jdrew.org/jDREWebsite/jDREW.html

3 REASONING TOOLS FOR THE SEMANTIC WEB 7

clausal first order logic (facts and rules) written in Java and well integrated
with the Web. Besides, XSLT translators can directly transform the RuleML
rulebases into the representation for a specified target engine such as XSB, Jess
and Cwm.

3.2 Rules-Enabled Ontology Engineering Platforms

After describing classical rule engines we concentrate on ontology engineering
platforms emerged in the setting of the Semantic Web, which support to some
extent rule-based modelling and reasoning services. Table-1 summarizes the
main features of the four systems we analyze in this section.

Table 1: Comparison
System Feature Reasoning
KAON ontology management Datalog engine for DLP

FLORA-2 F-Logic XSB as rule engine
iS DL reasoner + DB query TBox in DL, ABox in DB

3.2.1 KAON

KAON8 is an open-source ontology management infrastructure including a com-
prehensive tool suite to ease the creation and management of ontologies and to
assist the development of ontology-based applications. The main goal of KAON
is to retain scalability in reasoning with large ontologies and knowledge bases.
Therefore it currently relies on (deductive) database techniques to support effi-
cient reasoning with instances.

DLP (Description Logic Programs) are part of the KAON framework, and
can be used to transform OWL ontologies into a (disjunctive) logic program,
which is processed using the KAON Datalog engine. DLP-compatible ontologies
do not cover the whole range of the OWL language.

3.2.2 FLORA-2

FLORA-29 is a sophisticated object-oriented knowledge base language and ap-
plication development environment, which translates a unified language of F-
logic, HiLog, and Transaction Logic into the XSB deductive engine. The tabled
resolution is useful for recursive query computation, allowing programs to ter-
minate correctly in many cases where Prolog does not.

3.2.3 Instance Store

The Instance Store(IS)10 is a Java application for performing efficient and scal-
able Description Logic reasoning over individuals. The IS system consists of a
database to store all assertions over individuals, a reasoner to perform DL rea-
soning and an ontology to covering TBox knowledge. It defines two basic oper-
ations, namely addAssertion(individual, description) and retrieve(description).

8http://kaon.semanticweb.org/
9http://flora.sourceforge.net/

10http://instancestore.man.ac.uk/

3 REASONING TOOLS FOR THE SEMANTIC WEB 8

In a word, it supports reasoning by means of (relational) databases, reducing
the amount of reasoning to pure terminological reasoning.

3.3 OWL Reasoners

A last group of engines is related directly to the ontology languages for the
Semantic Web like OWL and RDF(S). A summary of their capabilities is pre-
sented in Table-2. Besides, the well-known DL reasoners FaCT and RACER
are introduced considering OWL is closely related to DL.

Table 2: OWL Reasoner
Reasoner Mechanism Related to
F-OWL backchaining with tabling in XSB Flora-2
Euler resolution with Euler path detection N3/Cwm
Pellet OWL DL reasoner Mindswap
Hoolet first order prover WonderWeb
Cerebra commercial implementation of DL NI company

ConsVISor rule-based system for checking VIS Inc.
RACER DL reasoner for TBox, ABox, Concrete Domain RICE
FaCT DL reasoner for SHF and SHIQ Lisp

F-OWL11 is an ontology inference engine for OWL based on Flora-2 and
XSB.

Euler12 is an inference engine supporting logic based proofs. It is a backward-
chaining reasoner and will tell you whether a given set of facts and rules supports
a given conclusion. The proof engine uses the resolution inference mechanism
and only follows Euler paths (the concept Euler found several hundred years ago)
so that endless deductions are avoided. That means that no special attention
has to be paid to recursions or to graph merging.

Pellet13 is an OWL DL reasoner based on the tableaux algorithms developed
for expressive Description Logics. After parsing OWL documents into a triple
stores, the OWL abstract syntax are separated into TBox(axioms about classes),
ABox(assertions about individuals) and RBox(axioms about properties), which
are passed to the tableaux based reasoner.

Hoolet14 is an OWL DL reasoner that uses a First Order Prover to rea-
son about OWL ontologies. Hoolet is implemented using the WonderWeb OWL
API for parsing and processing OWL, and the Vampire theorem prover for First
Order classical logic. Other reasoners could also be used since the communica-
tion with the reasoner is via the TPTP (Thousands of Problems for Theorem
Provers) format which is understood by various theorem provers.

Cerebra15 is a product of Network Inference, and its technology provides a
commercial grade, robust, scalable implementation of the DL algorithms that
use OWL documents in their native form. These algorithms are encapsulated
into a run-time engine that is provided as a service to other applications or
services and can respond to queries about ontologies from those applications.

11http://fowl.sourceforge.net
12http://www.agfa.com/w3c/euler/
13http://www.mindswap.org/2003/pellet/
14http://owl.man.ac.uk/hoolet/
15http://www.networkinference.com/

4 OWL2JESS 9

Furthermore, the Cerebra Server provides links and techniques to reason about
data and information not held within a given ontology, by accessing relational
data structures or meta-data.

ConsVISor16 is a Consistency Checker for OWL Full, DL and Lite that
emphasizes the generation of highly descriptive error and warning messages in
both HTML and OWL formats. ConsVISor is a rule-based system for checking
the consistency of ontologies and annotations serialized in RDF or OWL, as well
as warning the ontologist about elements that, while not necessarily inconsistent,
do not correspond to common modelling practices in OWL or RDF(S).

RACER17 (Renamed ABox and Concept Expression Reasoner) is a Descrip-
tion Logic reasoning system with support for TBoxes with generalized concept
inclusions, for ABoxes and for Concrete domains (e.g., linear (in-)equalities over
the reals). To support Semantic Web, RACER is also being used as as a Se-
mantic Web inference engine for developing ontologies, for query answering over
RDF documents and wrt. specified RDFS/DAML ontologies, and for register-
ing permanent queries (e.g., for building a document management system) with
notification of new results if available (publish-subscribe facility). Recently,
RACER has been plugged in Protege for developing ontologies in OWL for-
mat, and RICE (RACER Interactive Client Environment) provides the GUI for
interactively answering queries and visualizing TBoxes and ABoxes.

FaCT18 (Fast Classification of Terminologies) is a Description Logic classifier
that can also be used for modal logic satisfiability testing. The FaCT system
includes two reasoners, one for the logic SHF (ALC augmented with transitive
roles, functional roles and a role hierarchy) and the other for the logic SHIQ
(SHF augmented with inverse roles and qualified number restrictions), both of
which use sound and complete tableaux algorithms. Noting FaCT is written
in Common Lisp, and it would be run on any system where a suitable Lisp is
available, however it also provides a CORBA interface to run in a FaCT server
and a DIG servlet to run for Windows or Linux platform.

4 OWL2Jess

This chapter introduces a tool which converts OWL ontologies to Jess knowledge
bases. According different expressivity levels, it actually could be either reduced
to pure RDF2Jess, or extended to newly SWRL2Jess where SWRL[HPSB+04]
extends the set of OWL axioms to include Horn-like rules. By converting OWL
syntactically and semantically to Jess the tool enables the usage of the Jess
reasoning engine over OWL ontologies, which might be more efficient than DL
reasoners for particular tasks. Besides, when extending an OWL-formalized
knowledge base with rules, one needs a common reasoning engine for the cor-
responding heterogeneous data base, while preserving the advantages of using
OWL for particular modelling tasks.

4.1 Transforming OWL to Jess

Converting OWL knowledge bases to Jess in realized in four steps.
16http://www.vistology.com/consvisor
17http://www.sts.tu-harburg.de/ r.f.moeller/racer/
18http://www.cs.man.ac.uk/ horrocks/FaCT/

4 OWL2JESS 10

1). The first step is to build the ontology. An ontology editor like Protege19

provides an OWL Plug-in to support the development of OWL ontologies. Or-
ganizing knowledge in terms of classes, properties, restrictions and individuals
has been proven to be well accepted by domain experts and software developers,
since this paradigm is very similar to object-oriented modelling or UML. Be-
sides in the last decades various ontologies for almost every application domain
have been formalized in RDF(S) and OWL and can be therefore re-used to be
extended with rules if necessary.

2). The second step is to transform the XML syntax of OWL into the Jess
syntax by means of XSLT. Starting from the root, recurrent processes of ABox-
class and ABox-property are called via a set of named templates. The output
file consists of Jess facts. If the semantics of the underlying ontology languages
is already specified as Jess rules, specific keyword matching is unnecessary in
the OWL2Jess XSL transformation.

<xsl:template name="ABox-property" >
(assert (triple
(predicate "<xsl:value-of select="concat(ns-uri(.),name(.))"/>")
(subject "<xsl:call-template name="get-father-ID"/>")
(object "<xsl:call-template name="get-child-ID"/>"))
)<xsl:for-each select="*[position()=1]">
<xsl:call-template name="ABox-class"/>

</xsl:for-each></xsl:template>

3). The third step is to combine the Jess files, including the result of XSLT,
and our predefined RDF/OWL entailment rules. Furthermore, external Jess-
style queries and rulers can also be appended, such as the composition of proper-
ties (like “hasUncle(x,z) ← hasFather(x,y), hasBrother(y,z)”). Such rules could
also be represented using the SWRL rule language and the SWRL2Jess trans-
formation tool.

4). The fourth step is to run the Jess rule engine. Among our predefined
rules, we mention consistency checking, classification and characteristics. Out-
put results with error messages indicate invalid or illegal issues in the incoming
OWL ontology. Caution messages are used to signal whether the engine has dis-
covered an individual belonging to a certain class, moreover the machine would
randomly deal with the uncertainty like ∃ or ∨, based on the currently given
knowledge base.

4.2 Variants of OWL2Jess

Considering OWL (RDF-compatible) Model-Theoretic Semantics[PSHH04] is
based on RDF Semantics[HM04], our Jess rule file “owlmt.clp” includes a sep-
arate “rdfmt.clp”, resulting that a pure RDF document would also be applied
using a simpler RDF2Jess model, which will avoid unnecessary, expensive com-
putations on the more complex OWL semantics.

Another possible alternative to OWL2Jess is its extension to support SWRL-
enhanced OWL ontologies. Consequently, by another “SWRL2Jess.xsl” stylesheet,
the translation from the SWRL syntax to Jess syntax could be easily accom-
plished. However, unlike the above OWL2Jess XSL transformation, we need

19http://protege.stanford.edu/

4 OWL2JESS 11

additional keyword matching template to distinguish among different types of
SWRL rules and their components (see the XSLT fragment below). The output
consists of Jess rules, which will be handled in the same way as other entailment
rules sharing the common ontology knowledge.

<xsl:template match="ruleml:Imp">
(defrule imp <xsl:apply-templates select="ruleml:body" />

=> <xsl:apply-templates select="ruleml:head" />
)</xsl:template>

<xsl:template match="swrl:ClassAtom">
(triple
(predicate "&rdf;#type")
(object <xsl:apply-templates select="swrl:argument1" />)
(subject <xsl:apply-templates select="swrl:classPredicate" />)
)</xsl:template>

4.3 Some Issues about the OWL to Jess Transformation

As mentioned above, our proposal suggests to build ontologies in OWL and
transform the OWL knowledge base to Jess for particular reasoning purposes.
However, the semantics of OWL currently adopts an open world assumption(OWA),
while all rule-based languages including Jess are based on a close world assump-
tion(CWA).

In OWA, everything which was not specified explicitly is unknown to the
reasoning service. For example, an owl:Class is defined as C = ∀P.D, but we
can not conclude u ∈ C even if we have currently found out “for any given
v, P (u, v) there is v ∈ D”. The reason is there are more unknown t, maybe
P (u, t) but t 6∈ D. This fact can not be derived automatically due to the
open world assumption. However, in practice, we indeed need such real-time
conclusions, especially when we want to know whether there is something wrong
or something missing about our existing ontology.

Consequently, our intention is merely to check the given OWL ontology, to
remind the errors or cautions, and to suggest the modifications, rather than
attempt to modify it. According our error or caution messages, the author
can revise the ontology manually. Furthermore, the inferred Jess assertions are
helpful for the author to recognize all characteristics of the ontology, such as
that an individual currently belongs to an OWL restriction or an OWL boolean
combination, even if this assertion is missing from the original ontology.

Another important issue is related to “if-and-only-if”(iff) conditions. In RDF
Semantics[HM04], there are extensional semantic conditions (i.e., iff conditions)
for rdfs:subClassOf, rdfs:subPropertyOf, rdfs:domain, and rdfs:range, which are
so strong that some consequences inferred are useless in practice. For instance,
the domain and range of every property are extended to the largest one, namely
rdfs:Resource, resulting in confusions with original definitions. A similar situ-
ation appears for the OWL (RDF compatible) Semantics[PSHH04]. We ignore
these extensions here, however they are easy to be included if they are required.

5 ENTAILMENT RULES 12

5 Entailment Rules

According to the RDF Semantics[HM04] and the OWL (RDF-compatible) Model-
Theoretic Semantics[PSHH04], we implement the entailment rules in Jess one
by one. In the following we present the most important ones with a focus on
owl:Restrictions and boolean expressions, which are viewed as expressive re-
strictions [GHVD03] for rule-based languages.

Some works-around are helpful to cope with the semantic discrepancy be-
tween OWL and rule-based languages: error messages indicating some illegal
or invalid issues in the ontology or caution messages pointing out potentially
missing ontology statements.

5.1 RDF Semantics

RDF(S) axiomatic triples are transformed to facts. The following is a simple
Jess fact for “rdf:type rdf:type rdf:Property”.

(deffacts RDF_axiomatic_triples
(triple (predicate "rdf:type")

(subject "rdf:type")
(object "rdf:Property")))

It is unnecessary to assert the triples mentioned as RDFS-valid, such as
“rdfs:Class rdf:type rdfs:Class”, since all these could be inferred by other existing
rules.

RDF(S) semantic conditions are transformed to rules, some of which are
presented as follows. We ignore the extensional semantic conditions, i.e., if-and-
only-if conditions for rdfs:subClassOf, rdfs:subPropertyOf, rdfs:domain, and
rdfs:range, which are so strong that some consequences inferred are useless in
practice. For instance, the domain and range of every property are extended to
the largest one, namely rdfs:Resource, which would confuse with our intention.
Of course, the same situations also appear in OWL semantics, however they are
easy to be included if they are required.

5.1.1 rdf:type

It is stated as a basic RDFS semantic condition that, x is in ICEXT(y) if and
only if < x, y > is in IEXT(I(rdf:type)). Thus, we translate the inclusion relation
into a rule as below:

(defrule RDFS_semantic_conditions_type
(triple (predicate "rdf:type") (subject ?s) (object ?o))
=>
(assert (triple (predicate "rdf:type")

(subject ?o)
(object "rdfs:Class"))))

5.1.2 rdfs:domain

It is stated in RDF Semantics that, if < x, y > is in IEXT(I(rdfs:domain)) and
< u, v > is in IEXT(x) then u is in ICEXT(y). The corresponding rule is as
follows:

5 ENTAILMENT RULES 13

(defrule RDFS_semantic_conditions_range
(triple (predicate "rdfs:domain") (subject ?x) (object ?y))
(triple (predicate ?x) (subject ?u) (object ?v))
=>
(assert(triple (predicate "rdf:type") (subject ?u) (object ?y))))

5.1.3 rdfs:range

It is stated in RDF Semantics that, if < x, y > is in IEXT(I(rdfs:range)) and
< u, v > is in IEXT(x) then v is in ICEXT(y). The corresponding rule is as
follows:

(defrule RDFS_semantic_conditions_range
(triple (predicate "rdfs:range") (subject ?x) (object ?y))
(triple (predicate ?x) (subject ?u) (object ?v))
=>
(assert(triple (predicate "rdf:type") (subject ?v) (object ?y))))

5.1.4 rdfs:subPropertyOf

First rdfs:subPropertyOf is transitive and reflexive.

(defrule RDFS_semantic_conditions_subPropertyOf_transitive
(triple (predicate "rdfs:subPropertyOf") (subject ?x) (object ?y))
(triple (predicate "rdfs:subPropertyOf") (subject ?y) (object ?z))
=>
(assert (triple (predicate "rdfs:subPropertyOf")

(subject ?x) (object ?z))))

(defrule RDFS_semantic_conditions_subPropertyOf_reflexive
(triple
(predicate "rdf:type")
(subject ?p)
(object "rdf:Property"))
=>
(assert (triple (predicate "rdfs:subPropertyOf")

(subject ?p) (object ?p))))

Moreover it has the following characteristics:

(defrule RDFS_semantic_conditions_subPropertyOf
(triple (predicate "rdfs:subPropertyOf") (subject ?x) (object ?y))
(triple (predicate ?x) (subject ?a) (object ?b))
=>
(assert (triple (predicate ?y) (subject ?a) (object ?b))))

5.1.5 rdfs:subClassOf

rdfs:subClassOf has the same properties as rdfs:subPropertyOf.

(defrule RDFS_semantic_conditions_subClassOf_transitive
(triple (predicate "rdfs:subClassOf") (subject ?x) (object ?y))

5 ENTAILMENT RULES 14

(triple (predicate "rdfs:subClassOf") (subject ?y) (object ?z))
=>
(assert (triple (predicate "rdfs:subClassOf")

(subject ?x) (object ?z))))

(defrule RDFS_semantic_conditions_subClassOf_reflexive
(triple
(predicate "rdf:type")
(subject ?c)
(object "rdfs:Class"))
=>
(assert (triple (predicate "rdfs:subClassOf")

(subject ?c) (object ?c))))

(defrule RDFS_semantic_conditions_subClassOf
(triple (predicate "rdfs:subClassOf") (subject ?x) (object ?y))
(triple (predicate "rdf:type") (subject ?o) (object ?x))
=>
(assert (triple (predicate "rdf:type") (subject ?o) (object ?y))))

Moreover, it was pointed out that, any class is a subclass of the largest class,
namely rdfs:Resource.

(defrule RDFS_semantic_conditions_subClassOf_Resource
(triple (predicate "rdf:type")

(subject ?x)
(object "rdfs:Class"))

=>
(assert (triple (predicate "rdfs:subClassOf")

(subject ?x)
(object "rdfs:Resource"))))

5.2 OWL Semantics

The implementation of the OWL semantics are more challenging, since OWL
is an extension of RDFS to provide restrictions on how properties behave in
a local class scope[HPSvH03]. We define additional facts to represent typical
OWL primitives and their relationship to RDFS such as owl:Class is subclass of
rdfs:Class. A set of rules are defined to represent characteristics of OWL classes,
datatypes, properties and restrictions. In the remaining of this section we re-
strict to OWL restrictions and boolean expressions, which are in our opinion
the most relevant for the OWL to Jess conversion.

5.2.1 OR condition

We firstly encounter the “or” condition in the head of a rule, since subject-
values for owl:AnnotationProperty are owl:Thing or rdfs:Literal. Subsequently
B ∨ C ← A equals to ¬A ∨ B ∨ C equals to C ← A ∧ ¬B, while the first one
cannot be expressed in Jess and the last one can. However, when we represent
it as follows, by default the subject-values are owl:Thing if there is no definition

5 ENTAILMENT RULES 15

in advance. Usually such precise definitions are provided by the ontology author
in advance or might be suggested by ontology editors.

(defrule OWL_characteristics_AnnotationProperty_object
(triple (predicate "rdf:type")

(subject ?e)
(object "owl:AnnotationProperty"))

(triple (predicate ?e) (subject ?x) (object ?y))
(not (triple (predicate "rdf:type")

(subject ?y)
(object "rdfs:Literal")))

=>
(assert (triple (predicate "rdf:type")

(subject ?y)
(object "owl:Thing")))

(printout t "Caution!" ?y " now is in owl:Thing" crlf))

5.2.2 EQUIVALENT condition

owl:equivalentClasses and owl:equivalentProperties are stated to be subclasses
or subproperties of each other.

(defrule OWL_characteristics_equivalentProperty_relationship
(triple (predicate "owl:equivalentProperty") (subject ?x) (object ?y))
(test (neq 0 (str-compare ?x ?y)))
=>
(assert (triple (predicate "owl:subPropertyOf")

(subject ?x) (object ?y)))
(assert (triple (predicate "owl:subPropertyOf")

(subject ?y) (object ?x))))

In order to deal with the owl:disjointWith constraint, we make use of owl:differentFrom
to state the individuals of the two classes are different from each other.

(defrule OWL_characteristics_disjointWith_relationship
(triple (predicate "owl:disjointWith") (subject ?x) (object ?y))
(triple (predicate "rdf:type") (subject ?o1) (object ?x))
(triple (predicate "rdf:type") (subject ?o2) (object ?y))
=>
(assert (triple (predicate "owl:differentFrom")

(subject ?o1) (object ?o2))))

The owl:differentFrom and owl:sameAs constructs can not be translated di-
rectly to Jess. Checking x 6= y or x = y is easy, but no further statement could
be provided about its meaning. Consequently, an error message is generated to
signal this issue to the user.

(defrule OWL_characteristics_differentFrom
(triple (predicate "owl:differrentFrom") (subject ?x) (object ?y))
(test (eq 0 (str-compare ?x ?y)))
=>

5 ENTAILMENT RULES 16

(printout t "Error!" ?x " is not different from " ?y crlf))

(defrule OWL_characteristics_sameAs
(triple (predicate "owl:sameAs") (subject ?x) (object ?y))
(test (neq 0 (str-compare ?x ?y)))
=>
(printout t "Error!" ?x " is not same as " ?y crlf))

5.2.3 owl:complementOf

owl:complementOf is a subproperty of owl:disjointWith. It should be noticed
that owl:complementOf has a very strong semantics, resulting in any individual
must be in a class or in its complement, once the individual has been stated in
the universe. We state the meaning of owl:complementOf by this rule:

(defrule OWL_complementOf
(triple (predicate "owl:complementOf") (subject ?x) (object ?y))
(triple (predicate "rdf:type") (subject ?u) (object "owl:Thing"))
(not (triple (predicate "rdf:type") (subject ?u) (object ?y)))
=>
(assert (triple (predicate "rdf:type") (subject ?u) (object ?x)))
(printout t "Caution!" ?u " now is in " ?x crlf))

5.2.4 owl:intersectionOf

In OWL, the subject-value of owl:intersectionOf is a sequence of rdf:first, rdf:rest
constructs. However, via XSLT, we directly catch a owl:Class as the subject-
value, hence we skip the verbose syntax of rdf:List. Moreover, in Set Theory, set
equation A = B means A ⊆ B and A ⊇ B, so we decompose the set equation
of owl:intersectionOf into two rules “subset” and “supset”. Surely owl:unionOf
and owl:oneOf can be treated in a similar way.

Suppose 〈x, y〉 ∈ EXTI(SI(owl:intersectionOf)) and y is a sequence of y1, · · · , yn,
the subset relation is easy to state, because CEXTI(x) ⊆ CEXTI(y1) ∩ · · · ∩
CEXTI(yn) ⊆ CEXTI(yi). That is, for any u ∈ CEXTI(x), we have u ∈
CEXTI(yi), 1 ≤ i ≤ n, as shown below.

(defrule OWL_intersectionOf_subset
(triple (predicate "owl:intersectionOf") (subject ?x) (object ?y))
(triple (predicate "rdf:type") (subject ?u) (object ?x))
=>
(assert (triple (predicate "rdf:type") (subject ?u) (object ?y))))

Furthermore, the supset relation is also permitted in Jess. The troublesome
issue is to check out the individual u who belongs to all subclasses, i.e., ∀yi, u ∈
CEXTI(yi). Here, we make use of an implication in the body of a rule, namely
C ← (B ← A), equals to C ← (¬A ∨ B). However, it is better to write as
¬(A∧¬B) in Jess, for the negation of Jess is the failure of matching, and what
we want to know is the result of the matching of B rather A.

(defrule OWL_intersectionOf_supset
(triple (predicate "owl:intersectionOf") (subject ?x) (object ?y))

5 ENTAILMENT RULES 17

(triple (predicate "rdf:type") (subject ?u) (object ?y))
(not (and (triple (predicate "owl:intersectionOf")(subject ?x)(object ?v))

(not (triple (predicate "rdf:type")(subject ?u)(object ?v)))))
=>
(assert (triple (predicate "rdf:type") (subject ?u) (object ?x))))

5.3 owl:unionOf

If 〈x, y〉 ∈ EXTI(SI(owl:unionOf)) and y is a sequence of y1, · · · , yn, we can
easily state the supset relation, because CEXTI(x) ⊇ CEXTI(y1) ∪ · · · ∪
CEXTI(yn) ⊇ CEXTI(yi).

(defrule OWL_unionOf_supset
(triple (predicate "owl:unionOf") (subject ?x) (object ?y))
(triple (predicate "rdf:type") (subject ?u) (object ?y))
=>
(assert (triple (predicate "rdfs:type") (subject ?u) (object ?x))))

However, the subset relation is troublesome due to the uncertainty. Given an
individual u ∈ CEXTI(x), if we check out ∀yi, u 6∈ CEXTI(yi), then it indicates
something missing about the subclasses of the union x in the existing ontology,
else u ∈ CEXTI(yi) has been satisfiable. The engine would randomly assign
u to one yi after generating a caution message, which suggests the ontology
author to assert a new individual belonging to x and certain yi in the original
ontology.

(defrule OWL_unionOf_subset
(triple (predicate "owl:unionOf") (subject ?x) (object ?y))
(triple (predicate "rdf:type") (subject ?u) (object ?x))
(not (and (triple (predicate "owl:unionOf")(subject ?x)(object ?v))

(triple (predicate "rdf:type")(subject ?u)(object ?v))))
=>
(printout t "Caution!" ?u " now is in " ?y crlf)
(assert (triple (predicate "rdf:type") (subject ?u) (object ?y))))

5.4 owl:oneOf

To some extend, owl:oneOf is similar to owl:unionOf, for {y1, · · · , yn} = {y1} ∪
· · ·∪{yn}. Consequently in the subset relation, rdf:type is changed into owl:sameAs.

(defrule OWL_oneOf_subset
(triple (predicate "owl:oneOf") (subject ?x) (object ?y))
(triple (predicate "rdf:type") (subject ?u) (object ?x))
(not(and(triple (predicate "owl:oneOf")(subject ?x)(object ?v))

(or(test(eq 0 (str-compare ?u ?v)))
(triple(predicate "owl:sameAs")(subject ?u)(object ?v)))))

=>
(printout t "Caution!" ?u " now is same as " ?y crlf)
(assert (triple (predicate "owl:sameAs") (subject ?u) (object ?y))))

The supset relation is also more simple than in the previous cases:

5 ENTAILMENT RULES 18

(defrule OWL_oneOf_supset
(triple (predicate "owl:oneOf") (subject ?x) (object ?y))
=>
(assert (triple (predicate "rdf:type") (subject ?y) (object ?x))))

5.4.1 owl:allValuesFrom

Suppose 〈x, y〉 ∈ EXTI(SI(owl:allValuesFrom)) and 〈x, p〉 ∈ EXTI(SI(owl:onProperty)),
the subset relation is CEXTI(x) ⊆ {u|〈u, v〉 ∈ EXTI(p) implies v ∈ CEXTI(y)},
which can be easily translated into a Jess rule as below:

(defrule OWL_allValuesFrom_subset
(triple (predicate "owl:allValuesFrom") (subject ?x) (object ?y))
(triple (predicate "owl:onProperty") (subject ?x) (object ?p))
(triple (predicate "rdf:type") (subject ?u) (object ?x))
(triple (predicate ?p) (subject ?u) (object ?v))
=>
(assert (triple (predicate "rdf:type") (subject ?v) (object ?y))))

The supset relation contains an implication in the body of a rule, in which
B ← A is transformed as ¬(A ∧ ¬B), where A = 〈u, v〉 ∈ EXTI(p), B = v ∈
CEXTI(y).

(defrule OWL_allValuesFrom_supset
(triple (predicate "owl:allValuesFrom") (subject ?x) (object ?y))
(triple (predicate "owl:onProperty") (subject ?x) (object ?p))
(triple (predicate ?p) (subject ?u) (object ?v))
(not (and (triple (predicate ?p) (subject ?u) (object ?o))

(not (triple (predicate "rdf:type") (subject ?o) (object ?y)))))
=>
(assert (triple (predicate "rdf:type") (subject ?u) (object ?x))))

5.4.2 owl:someValuesFrom

Suppose 〈x, y〉 ∈ EXTI(SI(owl:someValuesFrom)) and 〈x, p〉 ∈ EXTI(SI(owl:onProperty)),
the supset relation is CEXTI(x) ⊇ {u|∃〈u, v〉 ∈ EXTI(p) such that v ∈
CEXTI(y)}. Once we find out one existence, we can assert it as below.

(defrule OWL_someValuesFrom_supset
(triple (predicate "owl:someValuesFrom") (subject ?x) (object ?y))
(triple (predicate "owl:onProperty") (subject ?x) (object ?p))
(triple (predicate ?p) (subject ?u) (object ?v))
(triple (predicate "rdf:type") (subject ?v) (object ?y))
=>
(assert (triple (predicate "rdf:type") (subject ?u) (object ?x))))

In order to specify the subset relation, for 〈u, v〉 ∈ EXTI(p), we first find
out all possible types s of the individual v, and then check whether y is one
possibility of s. If it fails, what we could do is to randomly assign one to belong
to y, else v ∈ CEXTI(y) has been satisfiable.

5 ENTAILMENT RULES 19

(defrule OWL_someValuesFrom_subset
(triple (predicate "owl:someValuesFrom") (subject ?x) (object ?y))
(triple (predicate "owl:onProperty") (subject ?x) (object ?p))
(triple (predicate "rdf:type") (subject ?u) (object ?x))
(triple (predicate ?p) (subject ?u) (object ?v))
(not (and (triple (predicate ?p) (subject ?u) (object ?o))

(triple (predicate "rdf:type") (subject ?o) (object ?s))
(test (eq 0 (str-compare ?s ?y)))))

=>
(printout t "Caution!" ?v " now is in " ?y crlf)
(assert (triple (predicate "rdf:type") (subject ?v) (object ?y))))

5.4.3 owl:hasValue

Suppose 〈x, y〉 ∈ EXTI(SI(owl:hasValue)) and 〈x, p〉 ∈ EXTI(SI(owl:onProperty)),
the set equation is CEXTI(x) = {u|∃〈u, v〉 ∈ EXTI(p)}, and the translations
are also easy.

(defrule OWL_hasValue_subset
(triple (predicate "owl:hasValue") (subject ?x) (object ?y))
(triple (predicate "owl:onProperty") (subject ?x) (object ?p))
(triple (predicate "rdf:type") (subject ?u) (object ?x))
=>
(assert (triple (predicate ?p) (subject ?u) (object ?y))))

(defrule OWL_hasValue_supset
(triple (predicate "owl:hasValue") (subject ?x) (object ?y))
(triple (predicate "owl:onProperty") (subject ?x) (object ?p))
(triple (predicate ?p) (subject ?u) (object ?y))
=>
(assert (triple (predicate "rdf:type") (subject ?u) (object ?x))))

5.4.4 owl:cardinality

Suppose 〈x, y〉 ∈ EXTI(SI(owl:cardinality)) and 〈x, p〉 ∈ EXTI(SI(owl:onProperty)),
the subset relation is CEXTI(x) ⊆ {u|card{〈u, v〉 ∈ EXTI(p)} = y}. We can
compute the number of v using the Jess function “count-query-results”. Error
messages are thrown in case the result does not equal to y.

(defquery OWL_cardinality_query
(declare (variables ?P ?S))
(triple (predicate ?P) (subject ?S) (object ?O)))

(defrule OWL_cardinality_subset
(triple (predicate "owl:cardinality") (subject ?x) (object ?y))
(triple (predicate "owl:onProperty") (subject ?x) (object ?p))
(triple (predicate "rdf:type") (subject ?u) (object ?x))
(test (<> ?y (count-query-results OWL_cardinality_query ?p ?u)))
=>

(printout t "Error!" ?x " has no " ?y " relating to " ?p crlf))

The supset relation is asserted by means of the “count-query-results” func-
tion.

6 EVALUATION AND FUTURE WORK 20

(defrule OWL_cardinality_supset
(triple (predicate "owl:cardinality") (subject ?x) (object ?y))
(triple (predicate "owl:onProperty") (subject ?x) (object ?p))
(triple (predicate ?p) (subject ?u) (object ?v))
=>
(if (= ?y (count-query-results OWL_cardinality_query ?p ?u)) then
(assert (triple (predicate "rdf:type") (subject ?u) (object ?x)))))

6 Evaluation and Future Work

6.1 Test Cases

In a first step all entailment rules are tested. In the output file of “rdfmt.clp”,
there are 55 predefined assertions, which completely consists of RDF(S) ax-
iomatic triples, and 108 inferred assertions, including the triples mentioned
as rdfs-valid, such as (pred sub obj)=(rdf:type rdfs:Class rdfs:Class). In or-
der to support the OWL semantics, this file is extended to 300 assertions,
most of which are simple ones resulting from the reflexive rdfs:subClassOf and
rdfs:subPropertyOf.

In a second step a small OWL ontology representing the family terminol-
ogy and some individuals asserting their relationships is tested. Besides the
obvious conclusions like those related to owl:Thing, more attention is paid to
owl:Restriction and boolean expressions. A constraint like “Father≡Manu∃hasChild.Person,
hasChild(mdg, mj), Person(mj), Man(mdg)” can be formalized using Protege.
A caution message is thrown after running Jess stating that “mdg now an indi-
vidual of the class Father”.

In the third step the classical we considered the often cited wine ontology20.
There are 1418 facts transformed from XSLT, and 5840 assertions inferred from
Jess, while running XSLT in 1 second and Jess in 29 second. Besides rdf:type
and rdfs:subClassOf, user-defined properties like “hasMaker” or “locatedIn” are
the source of new Jess assertions.

Finally, a larger ontology with approximately 1000 concepts from the medical
domain is tested. Its source code has 33246 lines, and 20700 facts appear after
XSLT, however the inferred 74238 assertions are almost all about rdf:type and
rdfs:subClassOf since the ontology mainly consists of TBox assertions. The
XSLT engine needed 1 second for the syntactical transformation, while running
the Jess rule engine took approximately 300 seconds.

6.2 Related work

Related work towards the integration of rules and ontologies in the Semantic
Web can be roughly divided into two categories: (1) extension approaches, which
directly extend OWL knowledge bases with rules, such as SWRL[HPSB+04], a
combination of the OWL with the Unary/Binary Datalog Rule Markup Lan-
guage, and the latest SWRL FOL[PS04] proposed to include an axiom for arbi-
trary first-order formula; (2) limitation approaches, which focus on the fragment
of OWL, such as DLP(Description Logic Programs)[GHVD03], an intermediate

20http://www.w3.org/TR/owl-guide/wine.rdf

6 EVALUATION AND FUTURE WORK 21

KR contained within the intersection of DL and LP, or OWL Lite−[dBPF04], a
strict subset of OWL Lite which can be translated into Datalog.

In the first category a SWRL Tab Widget[GI04] has been developed, which
combines SWRL rules and OWL ontologies with the Protege OWL Plugin,
Jess and Racer. Similarly, SweetJess[GGF02] (Semantic WEb Enabling Techn-
logies for Jess) defines a “DamlRuleML” ontology to deal with the Courte-
ous Logic Programs. ROWL[SGS04] (Rule Language in OWL and Translation
Engine for JESS) also uses a specially developed ontology to embody rules.
As mentioned among these approaches, a specified namespace is required, like
“swrl:”,“damlRuleML:” or “rowl:”, to declare the elements of a rule such as
head, body, variable, atom and so on. Nothing that, no special namespace is
provided in our model but we closely follow up in spirit to extension. That is,
all classes, properties and individuals are handed over from the OWL ontology
and are expressed directly in rules. Furthermore the combination of properties
could also be defined as a new rule to add more expressive power. On the other
hand, as to the knowledge of the authors, the mentioned systems do not cover
the RDF/OWL semantics to a satisfactory extent, ignoring owl:Restrictions or
boolean expressions, which are emphasized in our model.

The second class of approaches concentrates on isolating proper subsets of
OWL so as to be translated directly and completely without any loss of seman-
tics. However, our intension was to allow OWL ontologies to be extended with
rules, which means that we focus on scenarios where one needs to represent facts
beyond the OWL expressive power.

A similar work was presented in OWLJessKB21 which is a description logic
reasoner for OWL, whose semantics is implemented in Jess. OWLJessKB makes
use of the stand-alone distribution of ARP2 packaged with Jena2 to parse RDF
syntax, resulting in a huge libraries imported, while in our work a simple XSLT
sheetstyle is enough. Moreover, the semantic transformation included in OWL-
JessKB considers less entailment rules than in our case. Two error checking
(misusing as rdfs:Class and as rdfs:Property), as well as only two warning mes-
sages (omitting as rdfs:domain and rdfs:range) are generated for further changes
in the ontology.

6.3 Future work

Less than 100 lines in Java, we implement the transformation process of OWL
files with XSLT and draw inferences of OWL ontology and individuals with
Jess. All expressive restrictions are handled with the help of error or caution
messages, and the inferred assertions are helpful for the author to recognize
possible extensions of the ontology.

We are aware of the high space complexity required by the Rete algorithm
used in Jess, but we note that the time complexity could be linear. To tackle
this problem we can consider using a persistent storage system. In order for Se-
mantic Web to work in real-world scenarios outside of the research lab, it must
be possible to reason with scalable collections, for example by using database
techniques as in InstanceStore. We plan to investigate this issue in the future
in order to develop a tool taking advantages of the three technologies. Building
ontologies including classification and consistency checking can be realized ef-

21http://edge.cs.drexel.edu/assemblies/software/owljesskb/

REFERENCES 22

ficiently using Description Logics. Reasoning over large sets of individuals can
be performed preferentially using logic programming systems, while retrieving
and storing information persistently can rely on databases.

References

[BG94] Chitta Baral and Michael Gelfond. Logic Programming and Knowl-
edge Representation. Journal of Logic Programming, 1994.

[dBPF04] Jos de Bruijn, Axel Polleres, and Dieter Fensel. OWL Light. Avail-
able at http://www.wsmo.org/2004/d20/v0.1/20040629/, 2004.

[Eri03] Henrik Eriksson. Using JessTab to Integrate Protege and Jess.
IEEE Intelligent Systems, 18(2):43–50, 2003.

[For82] Charles L. Forgy. Rete: A Fast Algorithm for the Many Pat-
tern Many Object Pattern Match Problem. Artificial Intelligence,
19(1):17–37, 1982.

[GGF02] Benjamin N. Grosof, Mahesh D. Gandhe, and Timothy W. Finin.
SweetJess: Translating DamlRuleML to Jess. In Rule Markup Lan-
guages for Business Rules on the Semantic Web, June 2002, Sar-
dinia, Italy, 2002.

[GHVD03] Benjamin Grosof, Ian Horrocks, Raphael Volz, and Stefan Decker.
Description Logic Programs: Combining Logic Programs with De-
scription Logics. In WWW 2003, Budapest, Hungary, May 2003,
2003.

[GI04] Christine Golbreich and Atsutoshi Imai. Combining SWRL rules
and OWL ontologies with Protege OWL Plugin, Jess, and Racer.
7th International Protégé Conference, Bethesda, Maryland, July
2004.

[HBD04] David Hirtle, Harold Boley, and Mike Dean. SWRL RuleML
Accessing SWRL Properties as Foreign Atoms. Available at
http://www.ruleml.org/swrl/, 2004.

[HM04] Patrick Hayes and Brian McBride. RDF Semantics. Available at
http://www.w3.org/TR/rdf-mt/, 2004.

[HPS04] Ian Horrocks and Peter F. Patel-Schneider. A Proposal for an OWL
Rules Language. In the Thirteenth International World Wide Web
Conference (WWW 2004), pages 723–731. ACM, 2004.

[HPSB+04] Ian Horrocks, Peter F. Patel-Schneider, Harold Boley, Said Tabet,
Benjamin Grosof, and Mike Dean. SWRL: A Semantic Web
Rule Language Combining OWL and RuleML. Available at
http://www.w3.org/Submission/SWRL/, 2004.

[HPSvH03] Ian Horrocks, Peter F. Patel-Schneider, and Frank van Harmelen.
From SHIQ and RDF to OWL: The making of a web ontology
language. Journal of Web Semantics, 1(1):7–26, 2003.

REFERENCES 23

[KLW95] Michael Kifer, Georg Lausen, and James Wu. Logical Foundations
of Object-Oriented and Frame-Based Languages. Journal of ACM,
May 1995.

[KR03] Joseph Kopena and William Regli. DAMLJessKB: A Tool for Rea-
soning with the Semantic Web. IEEE Intelligent Systems, 18(3):74–
77, May 2003.

[MLYL04] Jing Mei, Shengping Liu, Anbu Yue, and Zuoquan Lin. An Ex-
tension to OWL with General Rules. In Rules and Rule Markup
Languages for the Semantic Web: Third International Workshop,
RuleML 2004, Hiroshima, Japan, November 8, 2004. Proceedings,
pages 155–169. Springer-Verlag Heidelberg, 2004.

[PS04] Peter F. Patel-Schneider. A Proposal for a SWRL
Extension to First-Order Logic. Available at
http://www.daml.org/2004/11/fol/proposal, 2004.

[PSHH04] Peter F. Patel-Schneider, Patrick Hayes, and Ian Horrocks. OWL
Web Ontology Language Semantics and Abstract Syntax. Available
at http://www.w3.org/TR/owl-absyn/, 2004.

[SGS04] Norman Sadeh, Fabien Gandon, and Mithun Sheshagiri. ROWL:
Rule Language in OWL and Translation Engine for JESS. Devel-
opers Day at the 2004 World Wide Web Conference, May 2004.

