
TR-07-06

Accurate Multiple Sequence-Structure Alignment of RNA Sequences
Using Combinatorial Optimization

Markus Bauer, Gunnar W. Klau, and Knut Reinert

March 2007

1

Accurate Multiple Sequence-Structure Alignment of RNA
Sequences Using Combinatorial Optimization

Markus Bauer∗,1,2 , Gunnar W. Klau∗,1,3 , Knut Reinert1

1Department of Mathematics and Computer Science, Free University Berlin, 14195 Berlin, Germany
2International Max Planck Research School for Computational Biology and Scientific Computing, Berlin, Germany
3DFG Research Center Matheon, Berlin, Germany

Email: Markus Bauer∗- mbauer@inf.fu-berlin.de; Gunnar W. Klau∗- gunnar@math.fu-berlin.de; Knut Reinert -

reinert@inf.fu-berlin.de;

∗Corresponding author

Abstract

Background: The discovery of functional non-coding RNA sequences has led to an increasing interest in

algorithms related to RNA analysis. Traditional sequence alignment algorithms, however, fail at computing

reliable alignments of low-homology RNA sequences. The spatial conformation of RNA sequences largely

determines their function, and therefore RNA alignment algorithms have to take structural information into

account.

Results: We present a graph-based representation for sequence-structure alignments, which we model as an

integer linear program (ILP). We sketch how we compute an optimal or near-optimal solution to the ILP using

methods from combinatorial optimization, and present results on a recently published benchmark set for RNA

alignments.

Conclusions: The implementation of our algorithm yields better alignments in terms of two published scores

than the other programs that we tested: This is especially the case with an increasing number of input

sequences. Our program LaRA is freely available from http://www.planet-lisa.net.

2

1 Background

In recent years, research in RNA sequences and structures has dramatically increased: the discovery of

functionally important, not protein-coding, RNA sequences has challenged the traditional picture of the

flow of genetic information from DNA via RNA to proteins as functional units. It is now well-established

that RNA molecules introduce an additional layer in genetic information processing. They play a

significant active role in cell and developmental biology and carry out many tasks that were previously

attributed exclusively to proteins. One of the most eminent examples is the class of microRNAs [1,2], an

abundant class of small functional RNAs that regulate gene expression by binding to a target in the

mRNA . Other examples include snoRNAs, which modify ribosomal RNA [3], signal recognition particle

RNAs [4], cis-acting regulatory elements, and piRNAs [5], a novel class of ncRNAs whose function is still

unclear. It is likely that only a small fraction of regulatory RNAs has been identified so far and that many

more have yet to be discovered [6].

Computational analyses have contributed largely to the discovery and advancement of biological knowledge.

Heuristic methods, such as BLAST [7], or exact approaches based on dynamic programming, such as the

Smith-Waterman algorithm [8], are used as everyday tools to analyze DNA and protein sequences.

In case of RNA sequences, sequence information alone is not sufficient anymore. An RNA sequence folds

back onto itself and forms hydrogen bonds between nucleotides. These bonds lead to the distinctive

secondary structure of an RNA sequence.

RNA sequences evolve more rapidly than the structure they are forming, because their evolutionary

behavior follows the structure-function paradigm: RNA molecules with different sequences but same or

similar secondary structure are likely to belong to the same functional family, in which the secondary

structure is conserved by selective pressure. Hence, computational analysis of RNA molecules inevitably

involves considering secondary structure information in addition to the primary sequence. Computing

sequence-structure alignments is a key step in many important applications. These include finding

homologous structures of known ncRNA families [9], phylogenetic fingerprinting (as conducted for example

for the ITS2 database [10]), or the computation of a consensus structure of a set of RNA molecules [11].

A recent study shows that pure sequence-based pairwise alignments are unable to produce satisfactory

results if the pairwise sequence identity drops below 50 to 60% [12]. Figure 1 illustrates this situation and

shows two different alignments of seven tRNA sequences with a pairwise sequence identity of 39%, where

the left alignment is based on sequence information alone and the right alignment additionally rewards the

conservation of structural elements. One can clearly see that the sequence-based alignment is unable to

3

Figure 1: Comparison between sequence-based (left, computed by the ClustalW program [13]) and sequence-
structure-based alignment (right, computed by LaRA, an implementation of our new approach). Consensus structures
generated using RNAalifold [14].

preserve the typical tRNA-cloverleaf structure, whereas the structural alignment conserves the structural

features of the input sequences.

Unfortunately, considering structural information adds an additional level of complexity to the problem of

aligning two or several sequences. In the remainder of this section, we present a classification of structural

alignment problem variants including previous work. Section 2 describes our new approach to multiple

sequence-structure alignment. We employ methods from mathematical programming and solve the

problem as an integer linear program resulting from a graph-theoretical reformulation. Section 3 is

dedicated to an extensive computational study. We describe LaRA, the freely available implementation of

our novel approach, and present detailed results of a comparative study including the state-of-the-art

programs on a recently published benchmark database of structural alignments. The results show that on

average our software is currently the best program in terms of alignment quality, outperforming other

programs with an increasing number of input sequences. Finally, we discuss our results and suggest future

research directions in Sect. 4.

4

GCGGAUAACCCC
GGAUACCAUC

GCGGAUAACCCC
GGAUACCAUC

GCGGAUAACCCC
GGAUACCAUC

(a) (b) (c)

Figure 2: Different input alignment scenarios of RNA sequences (pairwise case): (a) the alignment of two known
structures, (b) of one known and one unknown structure, and (c) of two unknown structures.

1.1 Previous Approaches

Depending on the available knowledge about the (putative) structures that we want to align, there are

three different alignment scenarios for two RNA structures, which readily extend to the multiple case.

Figure 2 gives an illustration of the three scenarios.

1. Structure-to-structure alignments align two known secondary structures, typically the minimum free

energy structures. This scenario applies if one searches for common structural motifs that are shared

by both structures and there is reason to believe that the secondary structures are correct.

2. Structure-to-unknown alignments align a given structure to a sequence with unknown structure.

Applications are finding homologous sequences by inferring a consensus structure to a sequence (this

has been done, for example, in case of the ITS2 database [10]), or finding new family members of

ncRNA families: This problem has recently sparked considerable interest in the context of searching

homologous structures of noncoding-RNAs in large genomic sequences. See [15] for a survey.

3. In the unknown-to-unknown alignment problem, no previous structural information is given. It

applies when two RNA sequences are suspected to share a common, but still unknown, structure. We

constrain the space of possible structures by the entire set of possible Watson-Crick and wobble pairs.

A reduction of the size of this space is possible, for instance, by applying a folding algorithm to

obtain the base pair probabilities [16] and then considering only those interactions whose

probabilities are above a certain threshold.

There are four major alignment models for RNA structures that tackle the previous described alignment

scenarios: annotated sequences, tree models, probabilistic models, and graph-based models. We give small

examples for each model in Fig. 3: Note that we did not show an example of probabilistic models because

the representation of probabilistic and tree models are the same. The underlying algorithms, however, are

5

tree-based annotated sequences probabilistic graph-based
structure-to-structure [17–20] [19,21–23] [24] [25–27]
structure-to-unknown — [19] [24,28] [25–27]
unknown-to-unknown — [19,29–32] [33] [25–27]

Table 1: Classification of previous work.

completely different. Table 1 classifies previous work in the area of structural RNA alignment according to

the different models and scenarios.

GCGGAUAACCCC

p
G C

p
G C

u

C

p
G C

u

A
u

U
u

A
u

A
u

C
G C G G A U A A C C C C

(a) (b) (c)

Figure 3: Different models representing RNA structures: (a) tree representation, (b) annotated sequences, and (c)
graph-based models.

Tree-based models. Tree-based structural alignment algorithms view an RNA secondary structure as a tree.

Depending on the particular model (either tree-editing [34] or tree alignment [18]), one either searches for

the minimal number of operations (node inserting, node deletion, and node substitution) to transform one

tree into the other, or into a common supertree. Algorithms employing the model from [18] have time

complexities in O(n4), thus making the computation expensive. Here and in the following, n denotes the

size of the longest sequence. Tree-alignment algorithms have complexities that are on average only slightly

worse than conventional sequence alignment. More precisely, their running time is in O(n2 ·∆2), where ∆

denotes the maximum number of branches of a multiloop in the input structures.

A tool that builds upon the tree paradigm is RNAForester [20]. It computes multiple

structure-to-structure alignments of RNA sequences by performing tree-alignment in a progressive fashion.

Annotated Sequences. We call a sequence augmented by structural information an annotated sequence.

Classical dynamic programming (DP) algorithms can be extended to annotated sequences. The DP

solution for the structure-to-structure and structure-to-unknown problem then typically requires O(n4) and

O(n3) in time and space, respectively. Bafna, Mutukrishnan, and Ravi describe an algorithm that

simultaneously aligns the sequence and secondary structure of two RNA sequences [19]. Their method runs

6

in time O(n4), which still does not make it applicable to instances of realistic size. Eddy [35] proposes an

algorithm that reduces the memory consumption to O(n2 log n). The Stral tool [36] uses the values of the

base pair probability matrices to compute the maximal pairing probability of a single nucleotide and to

align the sequences in a ClustalW-like fashion.

In the restricted structure-to-structure scenario, one can resort to more sophisticated edit-models like the

one proposed by Jiang in [22] where the authors specify operations both on the sequence and the structure

level. The dynamic programming algorithm is in O(n4), making the computation rather tedious for longer

sequences. A program that implements the Jiang model is MARNA [23]: it computes pairwise

sequence-structure alignments, but is additionally able to compute multiple alignments. To this end,

MARNA computes all pairwise structural alignment and uses T-Coffee to compute the actual multiple

alignment incorporating the structural information of the pairwise alignments.

The unknown-to-unknown scenario requires the simultaneous computation of the alignment and consensus

structure. The computational problem of simultaneously considering sequence and structure of an RNA

molecule was initially addressed by Sankoff in [29], where the author proposed a DP algorithm to align and

fold a set of RNA sequences at the same time. The CPU and memory requirements of the original

algorithm are O(n3k) and O(n2k), respectively, where k is the number of sequences and n is their maximal

length. Current implementations modify Sankoff’s algorithm by imposing limits on the size or shape of

substructures, e.g., Dynalign [30, 31], Foldalign [37, 38], which only considers stem-loops. Hofacker,

Bernhart, and Stadler [32] have presented the PMmulti software to align base pair probability matrices, as

given by the partition function [16]. Their recursions are essentially the same as the ones given by Sankoff

in [29] and subsequently used for sequence-structure alignemnt by Bafna et al. in [19] with the only

difference that they consider probabilities instead of fixed structures. By banding the range of possible

alignment positions they bring the time and space complexity of the pairwise case down to O(n4) and

O(n3), respectively. For the multiple case, they align consensus base pair probability matrices in a

progressive fashion. Similar in spirit is FoldalignM [39], a reimplementation of the PMmulti approach.

FoldalignM provides both several restrictions on the alignment and a two-stage procedure to fill the DP

matrix: this further reduces the running time to O(n2δ2) where n is the length of the longer sequence and

δ is the maximal length difference of the alignment of two subsequences.

Probabilistic models. Eddy and Durbin [24] describe covariance models for measuring the secondary

structure and primary sequence consensus of RNA sequence families. They present algorithms for

7

analyzing and comparing RNA sequences as well as database search techniques. Since the basic operation

in their approach is an expensive dynamic programming algorithm, their algorithms cannot analyze

sequences longer than 150-200 nucleotides. Therefore, recent approaches reduce the running time by

incorporating additional information, e.g. Holmes et al.’s Stemloc [40, 41] where the authors propose the

concept of alignment/fold envelopes that constrain possible alignments. Along these lines, in [33] the

authors keep a set of probabilistically derived alignment positions fixed: these alignment positions serve

subsequently as anchors for the structural alignment which prune away large parts of the search space.

The authors of [28] describe a method based on conditional random fields to align an RNA sequence with

known structure to one with unknown structure. They estimate their parameters using conditional random

fields and compute the alignment using the recursions from [42].

Graph-based Models. Kececioglu [43] has introduced a graph-theoretical model for the classical primary

sequence alignment problem. In [25] the authors present a first extension of this model to RNA structures

and propose a branch-and-cut approach based on an integer linear programming formulation. Based on

this formulation and inspired by the successful application of Lagrangian relaxation by Lancia and

Caprara [44] to the related contact map overlap problem, in [26] the authors switch from branch-and-cut to

the Lagrangian relaxation technique. They are able to solve instances a magnitude larger by

simultaneously reducing the running time significantly. In [45] the authors give a graph-theoretic model for

the computation of multiple sequence alignments with arbitrary gap costs. In the next section we will

combine the formulations given in [26] and [45], resulting in a novel graph-based formulation for

sequence-structure alignment with arbitrary gap costs.

Note that the graph-based model naturally deals with all three alignment scenarios. In addition, unlike

other algorithmic approaches, the graph-based algorithms do not restrict the input in any way and hence

can handle arbitrary pseudoknots: Pseudoknots have been shown to play important roles in a variety of

biological processes, see [46] for a recent review. Most DP-based algorithms assume nested secondary

structures to compute subproblems efficiently. Few exceptions exist, for example [47], but these algorithms

are always restricted to certain classes of pseudoknots (like H-type pseudoknots) and do not handle the

general case.

2 Results

This section deals with our novel graph-based approach to structural RNA alignment. We first give the

problem definition and then describe the graph-theoretical model we use, which combines the models

8

GCGGAUAACCCC
GGAUACCAUC

-GCGGAUAACCCC
GG-AUA-CCA-UC

GCGGAUAACCC-C
--GGAUA-CCAUC

Figure 4: Given the annotated sequences on the left side as the input, we search for an alignment maximizing the
sequence plus the induced structure score. The alignment in the middle conserves the entire annotation (highlighted
in grey), whereas the alignment on the right hand side maximizes the sequence score and does not conserve any
structure.

presented in [26] and [45]. We convert the nucleotides of the input sequences into vertices of a graph, and

we add edges between the vertices that represent either structural information or possible alignments of

pairs of nucleotides. Based on the graph model we develop an integer linear programming formulation. We

find solutions using an algorithmic approach employing methods from combinatorial optimization.

For sake of simplicity, we will limit the description to the two-sequence case. We want to stress, however,

that the model can be extended to the multiple case without changing the core algorithms and ideas. The

interested reader is referred to an extensive theoretical description including proofs and a computational

complexity discussion appearing elsewhere [48].

2.1 Graph-Theoretical Model for Structural RNA Alignment

Problem Definition. Given two RNA sequences, we denote by A an alignment of the two sequences. Let

sS(A) be the sequence score of alignment A including gap penalties, and let sP (A) be the score of

structural features that are conserved by the alignment A. We now aim at maximizing the combined

sequence-structure score, that is, we search for an alignment A∗ with

sS(A∗) + sP (A∗) = max
A

sS(A) + sP (A) .

Figure 4 gives a toy example showing two annotated sequences and two possible alignments, one

maximizing the score of sequence and structure, and the other one just the sequence score alone.

This problem definition comprises the one addressed by Bafna et al. in [19]: Our model, however, also

allows tertiary elements, which is not covered by their recursions.

Basic Model. Let s = s1, . . . , sn be a sequence of length n over the alphabet Σ = {A, C, G, U}. A pair

(si, sj) is called an interaction if i < j, and nucleotide i pairs with j. In most cases, these pairs will be

Watson-Crick or wobble base pairs. The set p of interactions is called the annotation of sequence s. Two

interactions (sk, sl) and (sm, so) are said to be inconsistent, if they share one base; they form a pseudoknot

if they “cross” each other, that is, if k < m < l < o or m < k < o < l. A pair (s, p) is called an annotated

9

sA

sB

AG

AU

A G

A U

Figure 5: Sequences sA = AG and sB = AU are given. The solid line between G and A represent the alignment of
these two nucleotides. If we added the gray dashed line, this would induce an ordering conflict.

sequence. Note that a structure where no pair of interactions is inconsistent with each other forms a valid

secondary structure of an RNA sequence, possibly with pseudoknots.

We are given two annotated sequences (sA, pA) and (sB , pB) and model the input as a structural graph

GS = (V,L). The set V denotes the vertices of the graph, in this case the bases of the sequences, and we

write vA
i and vB

i for the ith base in sequence A and B, respectively. The set L contains undirected

alignment edges between vertices of sequences A and B, for sake of better distinction called lines. A line

l ∈ L with l = (vA
k , vB

l) represents the alignment of the k-th character in sequence A with the l-th character

in sequence B. By s(l) and t(l) we refer to the adjacent vertices of line l in sequence A and B, respectively.

A subset L ⊂ L represents a valid sequence alignment of sequence A and B, if there are no two lines

k, l ∈ L such that k and l cross or touch each other [43]. Crossing or touching lines induce ordering

conflicts in the alignment (see Fig. 5 for an illustration). We denote with the set CL the collection of all

maximal sets of mutually conflicting lines.

We extend the original graph GS = (V,L) by the edge set I to model the annotation of the input sequences

in our graph. Consequently, we have interaction edges between vertices of the same sequence, i.e., an edge

(vA
i , vA

j) representing the interaction between nucleotides i and j in sequence A. Figure 6 illustrates these

definitions by means of an example. Note that at this stage gaps are not modelled in our formulation.

Hence, we have to extend our model to incorporate gap penalties in our model.

Gap Edges. The initial model containing only lines (the set L) and interaction edges (the set I) is

augmented by a set of gap edges G, which represents gaps in the alignment. For sake of compactness, we

just describe the gap edges of sequence A, the gap edges of sequence B are defined analogously: We have

an edge eA
kl from vA

k to vA
l with k, l ∈ 1, . . . , |sA| representing the fact that no character of the substring

sA
k . . . sA

l is aligned to any character of the sequence B, whereas sA
k−1 (if k − 1 > 0) and sA

l+1 (if

l + 1 ≤ |sB |) are aligned with some characters in sequence B. We say that vA
k , . . . , vA

l are spanned by the

gap edge eA
kl. Figure 7 shows the graph extended by gap edges.

Two gap edges eA
kl and eA

mn ∈ G are in conflict with each other if {k, . . . , l + 1} ∩ {m, . . . , n} 6= ∅, that is, if

10

vA
0 vA

2vA
1 vA

n

vB
0 vB

2vB
1 vB

n

sA

sB

GCAGCA-U--
--AG-AUUCC

G C A G C A U

A G A U U C C

G C A G C A U

A G A U U C C

(a) (b) (c)

Figure 6: (a) Initial graph model representing two annotated sequences sA = GCAGCAU and sB = AGAUUCC.
Solid lines represent lines, dashed lines represent interaction edges. Please note that in this toy example minimum
loop lengths constraints on the interaction edges are violated for sake of compactness of the illustration. Interactions
(vB

1 , vB
n−1) and (vB

1 , vB
n) are in conflict with each other, (vB

0 , vB
n−2) and (vB

1 , vB
n) form a pseudoknot. Sequence sA

contains only nested interactions. (b) A subset of all possible lines is shown representing the alignment (c).

vA
0 vA

2vA
1 vA

n

vB
0 vB

2vB
1 vB

n

. . .
sA

sB

GCAGCA-U--
--AG-AUUCC

G C A G C A U

A G U U C C

G C A G C A U

A G A U U C CA

(a) (b) (c)

Figure 7: (a) Initial model additionally augmented with gap edges. The figure shows possible alignments edges and

all gap edges starting from vA
0 (for sake of clarity, all other gap edges and interaction edges are not displayed). Note,

however, that every node has outgoing gap edges to all other nodes in the sequence. The subset of lines and gap
edges (b) corresponds to the alignment (c).

11

sA

sB

AGGCAGC
AG----A

G C A G C

A G A

G CA G

Figure 8: Gaps have to be realized by exactly one gap edge (in this example represented by the solid gray line), and
cannot be split into two separate smaller gaps (the two dotted gap edges in this example).

sA

sB

k l m n o
GG C A C

UG G C C

Figure 9: The pairs (k, m) and (k, o) are valid interaction matches. The pair (l, n), however, is not a valid interaction
match since l and n cross each other.

they overlap or touch. This is intuitively clear, because we do not want to split a longer gap into two

separate gaps: Consequently, there has to be at least one aligned character between any two realized gap

edges. See Fig. 8 for an example. We denote with the set CG the collection of all maximal sets of mutually

conflicting gap edges. Finally, we define GvA
k ↔vA

l
as the set of gap edges that span the nodes vA

k , . . . , vA
l .

Interaction Match. We call two interactions (sA
k , sA

l) ∈ pA and (sB
m, sB

n) ∈ pB an interaction match if there

exist two alignment edges a = (vA
k , vB

m) and b = (vA
l , vB

n) that do not cross each other. We say that a

subset S ⊆ L realizes the interaction match if {a, b} ⊆ S. Interaction matches realized by a set S represent

common interactions that are preserved by aligning the begin and end nucleotides of the interaction.

Figure 9 illustrates the definitions.

Gapped Structural Trace. A triple (L, I,G) with L ⊆ L, I ⊆ I, and G ⊆ G is called a valid gapped structural

trace if and only if the following constraints are satisfied:

1. The vertices vA
l and vB

k of sequences A and B are either incident to exactly one alignment edge e ∈ L

or spanned by a gap edge g ∈ G. In other words, a nucleotide is either aligned or “aligned” to a gap.

2. A line l can realize at most one interaction match (l,m), because a nucleotide can pair with at most

one other nucleotide in a valid RNA secondary structure.

3. There are no two lines k, l ∈ L that cross or touch each other: Crossing lines induce ordering conflicts

12

sA

sB

GC-AGCAC
AGAUUC-C

G C A G C A U

A G U U C CA

Figure 10: Valid gapped structural trace: every vertex is incident to exactly one line or is spanned by a gap edge.
There are no crossing lines, and every line is incident to at most one interaction match.

in the alignment, whereas touching lines imply that two different nucleotides are mapped to the same

nucleotide in the other sequence.

4. There are no two gaps edges eA
kl, e

A
mn ∈ G such that eA

kl is in conflict with eA
mn, and there are no two

gaps edges eB
kl, e

B
mn ∈ G such that eB

kl is in conflict with eB
mn.

Figure 10 visualizes these properties by showing a toy example for a gapped structural trace.

We assign weights wl and wkl for each line l and interaction match (k, l) that represents the benefit of

realizing l or (k, l). By default, we set these scores along the lines of standard scoring methods, e.g.,

BLOSUM matrices for the weight of the lines, base pair probabilities [16] for the interaction match scores,

or by using the RIBOSUM scoring matrices derived from alignments of ribosomal RNAs [49]. Our model,

however, is not limited to standard scoring schemes. Since we can set each (sequence or structure) weight

separately, the user can assign completely arbitrary scores to each line or interaction match which makes

the incorporation of expert knowledge into the computation of structural alignments easy. Furthermore, we

assign negative weights to gap edges aA
kl representing the gap penalty for aligning substring sA

k , . . . , sA
l with

gap characters. Note that the model allows for arbitrary, position-dependent gap scoring.

Approaches for traditional sequence alignment aim at maximizing the score of edges in an alignment L.

Structural alignments, however, must also take the structural information encoded in the interaction edges

into account. The problem of structurally aligning two annotated sequences (sA, pA) and (sB , pB)

corresponds to finding an alignment such that the weight of the sequence part (i.e., the weight of selected

lines plus gap penalties) plus the weight of the realized interaction matches is maximal. More formally, we

seek to maximize
∑

l∈L wl +
∑

g∈G wg +
∑

(i,j)∈I wij , where (L,G) represents an alignment with arbitrary

gap costs, and I contains the interaction matches realized by L. Observe that this graph-theoretical

reformulation matches the problem statement given at the beginning of this section.

13

Biological Aspects. The basic entities of our model are the alignment, interaction, and gap edges in the

structural graph, which contribute to the objective function rather independently. Hence, one could argue

that the model does not capture important features of RNA structures, like the incorporation of stacking

energies or loop scores that depend on the actual size of the loop. We are aware of these limitations.

Nevertheless, the results of our computational experiments presented in Sect. 3 show that this approach

yields high-quality structural alignments. In the pairwise case, our graph-based model is competitive with

state-of-the-art approaches and develops its strength with an increasing number of sequences,

outperforming all other programs that we tested. Beyond, our graph-based approach offers the possibility

to change the model from nucleotides as the working entities to stems: Instead of taking single nucleotides

as the vertices of the structural graph, we could search for candidate stems in the sequences and introduce

a vertex for each half-stem. This would allow us to incorporate energy-based scoring into our model, which

then, however, will have to be adapted to take into account overlapping stem candidates.

2.2 Integer Linear Program and Lagrangian Relaxation

Given the graph-theoretical model it is straightforward to transform it to an integer linear program (ILP).

We associate binary variables with each line, interaction match, and gap edge, and model the constraints of

a valid gapped structural trace by adding inequalities to the linear program.

The handling of lines and gap edges is straightforward: We associate a x and z variable to each line and

gap edge, respectively. We set xl = 1 if and only if line l ∈ L is part of the alignment L, and za = 1 if and

only if gap edge a ∈ G is part of the alignment.

Interaction matches, however, are treated slightly differently: Instead of assigning an ILP variable to each

interaction edge, we split an interaction match (l,m) into two separate directed interaction matches (l,m)

and (m, l) that are detached from each other. A directed interaction match (l,m) is realized by the line set

L if l ∈ L. We then have ylm = 1 if and only if the directed interaction match (l, m) is realized (note again

that ylm and yml are distinct variables). Figure 11 gives an illustration of the variable splitting. Note that

this does not change the underlying model, it just makes the ILP formulation more convenient for further

processing. Splitting interaction matches has first been proposed by Caprara and Lancia in the context of

contact map overlap [44].

As described in Sect. 2.1, the sets L, I, and G refer to lines, interaction edges, and gap edges, and the sets

CL and CG contain subsets of mutually conflicting lines or gap edges.

We then give the following ILP formulation for the gapped structural trace problem:

14

l m

G A U C

G A U CG

G A U C

G A U CG

Figure 11: One interaction match is split into two directed interaction matches.

max
∑
l∈L

wlxl +
∑
l∈L

∑
m∈L

wlmylm +
∑
g∈G

wgzg (1)

s. t.
∑
l∈CL

xl ≤ 1 ∀CL ∈ CL (2)

∑
a∈CG

za ≤ 1 ∀CG ∈ CG (3)

xl +
∑

a∈Gs(l)↔s(l)

za = 1 ∀l ∈ L (4)

xl +
∑

a∈Gt(l)↔t(l)

za = 1 ∀l ∈ L (5)

∑
m∈L

ylm ≤ xl ∀ l ∈ L (6)

ylm = yml ∀ l,m ∈ L (7)

x ∈ {0, 1}L y ∈ {0, 1}L×L z ∈ {0, 1}G (8)

Lemma 2.1 (Proof in [48]). A feasible solution to the ILP (1)–(8) corresponds to a valid gapped

structural trace of weight equal to the objective function and vice versa.

In [50] the authors show that the problem of computing an optimal gapped structural trace is already

NP-hard, even without considering gap costs. Hence, we cannot hope to find an optimal solution to the

problem in polynomial time.

Commonly used mathematical programming techniques for NP-hard problems therefore resort to various

relaxation techniques that are the basis for further processing. A relaxation results from the removal of

constraints from the original ILP formulation, and is often solvable in polynomial time. A popular

relaxation is the so called LP relaxation where the integrality constraints on the variables are dropped,

yielding a standard linear program, for which solutions can be found efficiently.

Another possible relaxation technique is Lagrangian relaxation: Instead of just dropping certain

15

inequalities, we move them to the objective function, associated with a penalty term that becomes active if

the dropped constraint is violated. By iteratively adapting those penalty terms using, for instance,

subgradient optimization, we get better solutions with each iteration. A crucial parameter is therefore the

number of iterations that we perform: the higher the number, the more likely it is to end up with an

optimal or near-optimal solution.

Inspired by the successful approach of Lancia and Caprara for the contact map overlap problem, we

consider the relaxation resulting from moving constraint (7) into the objective function.

Lemma 2.2 (Proof in [48]). The relaxed problem is equivalent to the pairwise sequence alignment

problem with arbitrary gap costs.

2.3 Algorithms for the Pairwise and Multiple Case

Our algorithm for the pairwise RNA structural alignment problem consists of iteratively solving the

primary sequence alignment problem associated with the relaxation. The penalization of the relaxed

inequality is reflected in an adapted scoring matrix for the primary alignment. Intuitively, these weights

incorporate also the structural information. In each iteration we get a new lower bound for the problem by

analyzing the primary sequence alignments and inferring the best structural completion of this alignment.

In fact, this corresponds to solving a maximum weighted matching problem in a general graph. For details

see [48]. In the course of the algorithm, these solutions get better and better. Furthermore, the value of the

relaxation itself constitutes an upper bound on the problem, which decreases with an increasing number of

iterations. When these bounds coincide, we have provably found an optimal solution, otherwise, we get

near-optimal solutions with a quality guarantee. Observe that the running time of our algorithm is in

O(kn2), where k is the number of iterations. Since we fix the number of iterations, this leads to a time

complexity of O(n2).

For the multiple case, similar in spirit to the MARNA software, we combine our pairwise method with the

popular progressive alignment software T-Coffee [51]. Progressive methods build multiple alignments

from pairwise alignments. The pairwise distances are usually used to compute a guide tree which in turn

determines the order in which the sequences are aligned to the evolving multiple alignment.

Progressive approaches often suffer from their sensitivity to the order in which the sequences are chosen

during the alignment process. T-Coffee reduces this effect by making use of local alignment information

from all pairwise sequence alignments during its progressive alignment phase. We supply such local

alignment information based on all-against-all structural alignments computed with our pairwise approach,

16

assigning a high score to conserved interaction matches. The structural information is subsequently passed

on to T-Coffee that computes a multiple alignment, taking into account the additional structural

information.

3 Experiments

The basis of our computational experiments is the recently published benchmark set BRAliBase 2.1 [52].

We compared our program to four other alignment programs using two established measures (Compalign

and SCI score) for quality of structural alignments. We performed all experiments with default parameters.

All alignments that we computed and the scripts for generating the plots are available from

http://www.planet-lisa.net/supplemental data/.

3.1 BRAliBase 2.1

We chose this dataset, which is available from http://www.biophys.uni-duesseldorf.de/bralibase/, as our

test set, since it covers a greater range of typical noncoding-RNA families than the original BRAliBase

dataset [12]. BRAliBase 2.1 contains 36 different RNA families, ranging from approximately 26

nucleotides long Histone 3’UTR stem-loop motifs to approximately 300 nucleotides long eukaryotic SRP

RNAs. See [52] for a detailed listing of all instances.

BRAliBase 2.1 reference alignments are based on manually curated seed alignments of the Rfam 7.0

database [53]. Out of the pool of all ncRNA families that have more than 50 sequences in their seed

alignment, either 2, 3, 5, 7, 10 or 15 sequences were randomly drawn considering constraints on the

sequences (e.g., average sequence identity or structural conservation). These subsets of the original seed

alignments form the instances of BRAliBase: in the following we stick to the BRAliBase naming

convention and refer to the sets of instances by k2, k3, k5, k7, k10, and k15, depending on the number of

sequences per instance.

3.2 Compalign and SCI

We use two different scores to measure the quality of the computed alignments: the Compalign value codes

the degree of similarity to a given reference alignment as given by the percentage of columns that are

identically aligned as in the reference alignment. A value of 1 states that the reference and test alignment

are the same, whereas 0 denotes that no column was correctly aligned with respect to the reference

alignment.

17

The second score is the so called structural conservation index [54] (or SCI in short). The SCI basically

gives the degree of conservation of a consensus structure induced by a multiple alignment in relation to the

minimum free energy structure of each sequence (to be more precise, not the actual structures are

compared but their respective energy values). A SCI value of ≈ 1 indicates very high structural

conservation, whereas a value around 0 indicates no structural conservation at all. Note that the SCI score

can be greater than 1, because covariance information is additionally rewarded in the computation.

We have used the programs compalignp and scif to compute the Compalign and SCI score. Both tools are

freely available from the BRAliBase website.

3.3 Other Structural Alignment Programs

We implemented our approach called LaRA in C++ within the LiSA framework. LiSA (Library of

S tructural Alignment algorithms) contains various methods for aligning protein and RNA structures as

well as biological networks. The source code is freely available from http://www.planet-lisa.net.

Furthermore, we selected several other multiple structural alignment programs to compare the results. We

used MARNA [23] (available from

http://biwww2.informatik.uni-freiburg.de/Software/MARNA/index.html) using an ensemble of three

suboptimal structures as its input, Stral [36] (a sequence based algorithm incorporating McCaskill’s base

pair probabilities, available from http://www.biophys.uni-duesseldorf.de/stral/), and a reimplementation

of the PMComp approach called FoldalignM [39] (a banded variant of Sankoff’s algorithm that aligns

base pair probability matrices, available from http://foldalign.kvl.dk/software/index.html). Furthermore,

to compare the performance of the structure-based alignment programs to purely sequence-based ones, we

performed the same tests with Muscle [55], a recent multiple sequence alignment program. We want to

emphasize that we did not perform any parameter tuning for any program (this includes LaRA), i.e., we

downloaded the programs from the respective websites and performed the computations out of the box

without specifying any optional parameters.

Since earlier studies [12,52] showed that structural alignments only contribute an additional

benefit—compared to sequence-based approaches—if the pairwise sequence identity drops below

≈ 50− 60%, we restricted the test set to instances of low homology, i.e., instances having a pairwise

sequence identity below 50%.

18

3.4 LaRA

A scoring system for structural alignments has to provide two different kinds of scores: scores for the

sequence and the structure part (in case of LaRA, these correspond to weights for the alignment and

interaction edges, respectively). Since the structure is considered to contain the necessary information for

“correct” alignments, we have to make sure that the structure scores contribute the major part to the

overall score.

We do not generate the complete annotation for our input sequence, that is, an interaction edge between

every possible interaction, but restrict interaction edges to those having base pair probabilities larger than

a threshold pmin.

For the scoring of the edges, LaRA provides two different schemes: First, a scoring system based on base

pair probability matrices (BPP scoring in short) that rescales the scores in spirit of PMComp. More

precisely, given the probability pij that nucleotide i and j pair, the actual score sij for the structural

interaction between i and j is given by

sij = lg
(

pij

pmin

)
where lg is the natural logarithm. For the sequence scoring, we take the entries from the RIBOSUM

matrices [49] as the actual sequence scores (that is the scores for pairs of nucleotides) and multiply them

by a user-specific adjustment factor τ . The default value for τ is 0.05, leading to a small sequence score

contribution to the overall score. If one knows, however, that sequence is equally or more important than

the structure (e.g., in case of riboswitches), one simply has to increase the value of τ .

The second scheme employs the RIBOSUM scoring matrices both for sequence and structure scoring:

these matrices are based on given alignments of ribosomal RNAs from which log-odds scores were derived.

They provide both sequence and structure scores, without rescaling the scores.

The second crucial LaRA parameter is the number of iterations: the more iterations LaRA computes, the

more often the penalty terms are adapted (yielding better alignments). As one can see in Fig. 12 the

number of iterations influences the quality of the computed alignment while the running time increases

linearly with the number of iterations.

Score vs. Alignment Accuracy. We were interested to what extent the accuracy of our alignments correlates

with the actual BPP score that we computed. Since the score depends on the length of the input

sequences, we normalized the score with respect to the number of paired bases in the minimum free energy

structure. Note that we did not use the actual structure, but the number of base pairs in the structure to

19

35 40 45

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Comparison 100 vs. 500 iterations

APSI

C
O

M
P

A
LI

G
N

lara_500it
lara_100it

Figure 12: Comparison of all k10 instances of low homology between LaRA running 100 or 500 iterations. Each dot
correponds to one problem instance, the thick lines were computed using Lowess regression.

get a rough estimate of how many pairings we expect in the structure. Then, let p̂ and n be the average

score and the number of base pairs in the MFE structure, then the base-pair normalized score is given by

p̂/n. The left side of Fig. 13 shows the results for all k10 instances. The great majority of instances

behaves as expected: the higher the bp-score is, the better is the corresponding Compalign score: There is,

however, a group of 10 outliers (represented by the red boxes). Although they have a high bp-score

(greater than 10.0), the alignment accuracy is bad: it turned out that these 10 instances are all

SECIS-elements, indicating that the BPP scoring scheme is not appropriate for this group.

Furthermore, we assumed that there should a correlation between the actual performance of our algorithm

and, again, the quality of our alignments: Remember that each Lagrange iteration results in a new valid

solution and a new upper bound for the problem instance. Dividing the value of the highest lower bound

by the value of the lowest upper bound gives an optimality ratio, i.e., a measure of how close the best

solution is to an optimal one. Assuming an inverse correlation between the gap between lower and upper

bound and the quality of the alignment, we again took all k10 BRAliBase instances of low pairwise

sequence identity and computed the arithmetic mean of the optimality ratios of all pairwise alignments.

The right side of Fig. 13 shows the plot for all 189 k10 instances with a sequence similarity lower than 50%.

20

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

bp
-n

or
m

al
iz

ed
 s

co
re

COMPALIGN

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
V

G
 O

P
T

COMPALIGN

Figure 13: All BRAliBase k10 instances of low pairwise sequence identity where each cross or box corresponds to
one instance: The x-axis gives the Compalign score. The y-axis codes either a structure-normalized score (left side),
or the optimality ratio (right side). The red boxes mark the outliers.

Most of the instances behave as expected: the higher the average optimality ratio is, the closer is the

computed alignment to the reference alignment (and vice versa). There is, however, a group of 19 instances

that behave differently (marked as red boxes in Fig. 13): Although their average optimality ratio is high

(> 0.7), the corresponding Compalign value is rather low compared to instances of similar average

optimality ratio. A closer inspection revealed that all instances of the upper left corner (that is instances

having a Compalign value lower than 0.65 and an average optimality ratio of greater than 0.7, represented

by red boxes in Fig. 13) comprises almost all instances of either bacterial SRP RNAs or SECIS elements

(just one SRP RNA instance is not among the 19 instances). We therefore increased the number of

iterations for one SECIS instance to see whether this would positively influence the quality of the

alignment. By setting the number of iterations to 500, 1000, and 2000 we got average optimality ratios of

0.83, 0.85, and 0.87, by simultaneously yielding Compalign values of 0.39, 0.38, and 0.36, respectively.

Obviously, the better the computed alignments in terms of the optimality ratio are, the worse they got

with respect to the reference alignment.

Consequently, for the outlier instances described above, we changed the scoring from BPP to RIBOSUM

scores. Figure 14 shows the change in terms of the Compalign score and optimality ratio for the 19 outlier

instances: 16 instances had better Compalign scores by using the RIBOSUM scoring, whereas the

optimality ratio decreased in the majority of instances.

In general, however, our experiments showed that RIBOSUM scoring is not superior to BPP scoring (at

least for the BRAliBase benchmark and LaRA): Figure 15 shows a comparison of all low homology k5

instances using either base pair probability matrices or RIBOSUM scoring, and it is obvious that base

21

COMPALIGN

−0.4 −0.2 0.0 0.2 0.4

AVG OPT

−0.4 −0.2 0.0 0.2 0.4

Figure 14: Change of the Compalign score and optimality ratio after changing the scoring from BPP to RIBOSUM
matrices for the 19 outlier instances.

pair probability scoring yields better results on these input instances.

3.5 Comparison to Other Programs

As described in Sect. 3.2 we used two different scores to assess the quality of the computed alignments: the

Compalign (the degree of similarity between the test alignment to a given reference alignment) and the SCI

score (the degree of structural conservation induced by the test alignment).

FoldalignM performs an alignment and clustering of the input sequences at the same time: in some

instances, FoldalignM splits the input sequences into two clusters. Since the scores that we use depend

on the number of input sequences, we dropped those FoldalignM alignments that did not contain all

sequences in the final alignment: This leads to 43, 30, 11, 15, 19, and 6 instances that we did not consider

in case of k2, k3, k5, k7, k10, and k15 instances.

In Fig. 16 we show the results of our experiments broken down to the different input classes (either k2, k3,

k5, k7, k10, or k15). These graphics have the average pairwise sequence identity and the Compalign score

as their x- and y-axis, respectively. The reference alignments therefore correspond to horizontal lines at a

Compalign score of 1.0.

We have made several observations: First of all, in the pairwise case (i.e., the k2 instances) LaRA has a

similar performance as the Sankoff variant FoldalignM up to a sequence identity of ≈ 42%. For the

range of ≈ 42− 50% all programs (even the sequence-based Muscle) have comparable performance

22

35 40 45

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Comparison BPP vs. RIBOSUM scoring

APSI

C
O

M
P

A
LI

G
N

BPP
RIBOSUM

Figure 15: Comparison between base pair probability (BPP) and RIBOSUM scoring.

(except for MARNA). With an increasing number of input sequences per instance, especially for the k10

and k15 sequences, the results change tremendously: LaRA outperforms the other programs, yielding

average Compalign scores of ≈ 90%, whereas the other structure-based alignment programs have scores

around ≈ 55− 75%. This is quite remarkable, especially considering that FoldalignM and LaRA show a

similar performance in the pairwise case: FoldalignM, however, computes multiple alignments in a

progressive fashion, whereas LaRA computes all pairwise alignments and leaves it to T-Coffee to

compute an alignment that is highly consistent with all pairwise alignments. With an increasing number of

input sequences, the consistency-based approach generates better alignments than the progressive methods

(at least in the case of our experimental setup).

Another astonishing observation is the performance of Muscle, a purely sequence-based program: the k2

and k3 instances show a comparable performance for instances above ≈ 42%, which is already surprising.

With a growing number of input instances, the performance of Muscle becomes even better: in case of 15

input instances, the program yields—on average—the second best results (behind LaRA), outperforming

even FoldalignM and Stral, which incorporate structural information. It has to be investigated

whether the creation of the benchmark set has to be revisited, because these plots clearly contradict the

hypothesis that sequence-based programs yields significantly worse results for input instances of a pairwise

sequence identity below 50%.

In Fig. 17 we show the results with respect to the SCI score (remember that the SCI is a measure for the

23

15 20 25 30 35 40 45 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

k2

APSI

C
O

M
P

A
LI

G
N

lara
marna
foldalign
stral
muscle

30 35 40 45

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

k3

APSI

C
O

M
P

A
LI

G
N

35 40 45

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

k5

APSI

C
O

M
P

A
LI

G
N

35 40 45

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

k7

APSI

C
O

M
P

A
LI

G
N

38 40 42 44 46 48

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

k10

APSI

C
O

M
P

A
LI

G
N

40 42 44 46 48

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

k15

APSI

C
O

M
P

A
LI

G
N

Figure 16: Results on all low homology instances containing 2 (upper left), 3 (upper right), 5 (middle left), 7 (middle
right), 10 (lower left), and 15 (lower right) instances from the BRAliBase benchmark set. The x- and y-axes give
the average pairwise sequence identity (APSI) and the Compalign score. The legend from the upper left plot applies
to the other plots as well.

24

structural conservation of an alignment). The general trend is the same as in Fig. 16. In the pairwise case,

the LaRA curve has the same shape as the reference curve, but shifted by about 0.1 to the bottom.

FoldalignM yields the best approximation to the reference line, having almost the same performance for

instances with an APSI greater than 30%. With an increasing number of input sequences, the situation

changes: from k5 on LaRA generates the best approximation to the reference line, with FoldalignM

being the second best program. Taking a look at the various result plots puts the extraordinary

performance of Muscle into perspective regarding the k10 and k15 input sets.

Comparison of running times. We compared the programs tested on the same computing server with an Intel

Xeon CPU running at 3.2 GHz, 3.5 GB RAM, and Linux kernel version 2.6.16. It turned out that memory

requirement was not an issue, but the computation time instead: especially MARNA scales in O(n4),

which makes the alignment of longer sequences (for example the SRP instances of BRAliBase) rather

time-consuming. This, however, is not the case with LaRA and Foldalign, since these two programs

have running times in O(n2). To evaluate the time consumption within reasonable time, we therefore set a

time limit of 20 minutes per instance: If the computation was not finished within 20 minutes, the process

was killed and we took 20 minutes as the actual running time. In Table 2 we list the number of instances

that the corresponding program was no able to align within 20 minutes.

Program k2 k3 k5 k7 k10 k15
LaRA 0 0 0 0 0 0

FoldalignM 0 0 0 0 0 0
Stral 0 0 0 0 0 0

MARNA 0 49 23 17 12 6
Muscle 0 0 0 0 0 0

Table 2: Unsolved instances within a time limit of 20 minutes.

We were especially interested how the running times of the programs that use structure information scaled

with respect to the number of the input sequences: Foldalign is a progressive approach which computes

(n− 1) pairwise alignments given n input sequences. MARNA and LaRA, however, compute all n(n−1)
2

pairwise alignments. Figure 18 shows the execution time of all five programs on all k2, k3, k5, k7, k10, and

k15 instances. As one can see, with an increasing number of input sequences, a progressive alignment

strategy pays off compared to the computation of all pairwise alignments.

25

15 20 25 30 35 40 45 50

0.
0

0.
5

1.
0

1.
5

k2

APSI

S
C

I

lara
marna
foldalign
stral
muscle
reference

30 35 40 45

0.
0

0.
5

1.
0

1.
5

k3

APSI

S
C

I

35 40 45

0.
0

0.
5

1.
0

1.
5

k5

APSI

S
C

I

35 40 45

0.
0

0.
5

1.
0

1.
5

k7

APSI

S
C

I

38 40 42 44 46 48

0.
0

0.
5

1.
0

1.
5

k10

APSI

S
C

I

40 42 44 46 48

0.
0

0.
5

1.
0

1.
5

k15

APSI

S
C

I

Figure 17: Results on all low homology instances containing 2 (upper left), 3 (upper right), 5 (middle left), 7 (middle
right), 10 (lower left), and 15 (lower right) instances from the BRAliBase benchmark set. The y-axis gives the SCI
score. The legend from the upper left plot applies to the other plots as well.

26

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

k2
(2251)

k3
(1048)

k5
(512)

k7
(323)

k10
(189)

k15
(123)

se
co

nd
s

instances

Comparison of running times

FoldalignM
LaRA

MARNA

Figure 18: The plot shows a comparison of the running times between the structural programs tested. With an
increasing number of input sequences, a progressive alignment strategy pays off compared to the computation of all
pairwise alignments. The numbers in brackets denote the number of instances per input class.

4 Conclusions

We have presented a novel method for computing high-quality pairwise structural RNA alignments. We

approach the original problem using a flexible graph-based model, which naturally deals with

pseudo-knots. We find solutions in our model by means of an integer linear programming formulation and

the Lagrangian relaxation technique. For the multiple case, we compute all-against-all pairwise solutions

and pass this information to T-Coffee, a progressive alignment algorithm.

Our extensive computational experiments on a large set of benchmark alignments show that LaRA, the

implementation of our algorithm, outperforms alternative approaches in terms of quality of the results.

The difference to other programs gets larger the more sequences have to be aligned. In this context, we

also find the performance of Muscle, a purely sequence-based program, remarkable. Muscle comes closer

to manually curated reference alignments than all other structure-specific tools besides LaRA for

alignments of more than ten sequences.

In the future, we will work on incorporating an appropriate concept of locality into our algorithm.

Furthermore, we are currently implementing an exact branch-and-bound framework around the Lagrangian

approach and will develop a stem-based variant of LaRA.

LaRA is freely available from http://www.planet-lisa.net as part of the LiSA library.

27

Acknowledgements

This work has been partly supported by the DFG grant KL 1390/2-1. MB is supported by the

International Max Planck Research School for Computational Biology and Scientific Computing.

References
1. Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T: Identification of novel genes coding for small

expressed RNAs. Science 2001, 294(5543):853–8.

2. Lau NC, Lim LP, Weinstein EG, Bartel DP: An abundant class of tiny RNAs with probable regulatory
roles in Caenorhabditis elegans. Science 2001, 294(5543):858–62.

3. Samarsky DA, Fournier MJ: A comprehensive database for the small nucleolar RNAs from
Saccharomyces cerevisiae. Nucleic Acids Res. 1999, 27:161–164.

4. Gorodkin J, Knudsen B, Zwieb C, Samuelsson T: SRPDB (Signal Recognition Particle Database).
Nucleic Acids Res. 2001, 29:169–170.

5. Kim VN: Small RNAs just got bigger: Piwi-interacting RNAs (piRNAs) in mammalian testes.
Genes Dev. 2006, 20(15):1993–1997.

6. Mattick JS: The functional genomics of noncoding RNA. Science 2005, 309(5740):1527–1528.

7. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic Local Alignment Search Tool. J. Mol. Biol.
1990, 215:403–410.

8. Smith TF, Waterman MS: Identification of Common Molecular Subsequences. J. Mol. Biol. 1981,
147:195–197.

9. Zhang S, Haas B, Eskin E, Bafna V: Searching Genomes for Noncoding RNA Using FastR. IEEE/ACM
Transactions on Computational Biology and Bioinformatics 2005, 2(4):366–379.

10. Wolf M, Achtziger M, Schultz J, Dandekar T, Müller T: Homology modeling revealed more than 20,000
rRNA internal transcribed spacer 2 (ITS2) secondary structures. RNA 2005, 11(11):1616–1623.

11. Hofacker IL, Fekete M, Stadler PF: Secondary Structure Prediction for Aligned RNA Sequences. J.
Mol. Biol. 2002, 319:1059–1066.

12. Gardner P, Wilm A, Washietl S: A benchmark of multiple sequence alignment programs upon
structural RNAs. Nucl. Acids Res. 2005, 33(8):2433–2439.

13. Thompson JD, Higgins DG, Gibson TJ: CLUSTAL W: improving the sensitivity of progressive
multiple sequence alignment through sequence weighting, position-specific gap penalties and
weight matrix choice. Nucl. Acids Res. 1994, 22(22):4673–4680.

14. Washietl S, Hofacker IL: Consensus folding of aligned sequences as a new measure for the detection
of functional RNAs by comparative genomics. J. Mol. Biol. 2004, 342:19–30.

15. Freyhult EK, Bollback JP, Gardner PP: Exploring genomic dark matter: A critical assessment of the
performance of homology search methods on noncoding RNA. Genome Research 2007, 17:117–125.

16. McCaskill JS: The Equilibrium Partition Function and Base Pair Binding Probabilities for RNA
Secondary Structure. Biopolymers 1990, 29:1105–1119.

17. Shapiro BA, Zhang K: Comparing Multiple RNA Secondary Structures Using Tree Comparisons.
CABIOS 1990, 6:309–318.

18. Jiang T, Wang J, Zhang K: Alignment of Trees — An Alternative to Tree Edit. Theor. Comput. Sci.
1995, 143:137–148.

19. Bafna V, Muthukrishnan S, Ravi R: Computing similarity between RNA strings. In Proc. of CPM’95,
no. 937 in LNCS, Springer 1995:1–16.

20. Höchsmann M, Töller T, Giegerich R, Kurtz S: Local Similarity in RNA Secondary Structures. In Proc
of the Computational Systems Bioinformatics Conference, Stanford, CA, August 2003 (CSB 2003)
2003:159–168.

28

21. Evans P: Finding Common Subsequences with Arcs and Pseudoknots. In Proc. of CPM’99, no. 1645 in
LNCS, Springer 1999:270–280.

22. Jiang T, Lin GH, Ma B, Zhang K: A general edit distance between RNA structures. J. of
Computational Biology 2002, 9:371–388.

23. Siebert S, Backofen R: MARNA: Multiple alignment and consensus structure prediction of RNAs
based on sequence structure comparisons. Bioinformatics 2005, 21(16):3352–3359.

24. Eddy SP, Durbin R: RNA sequence analysis using covariance models. Nucl. Acids Research 1994,
22(11):2079–2088.

25. Lenhof HP, Reinert K, Vingron M: A Polyhedral Approach to RNA Sequence Structure Alignment.
Journal of Comp. Biology 1998, 5(3):517–530.

26. Bauer M, Klau GW: Structural Alignment of Two RNA Sequences with Lagrangian Relaxation. In
Proc. of ISAAC’04, no. 3341 in LNCS, Springer 2004:113–123.

27. Bauer M, Klau GW, Reinert K: Multiple Structural RNA Alignment with Lagrangian Relaxation. In
Proc. WABI’05, Volume 3692 of LNBI 2005:303–314.

28. Sato K, Sakakibara Y: RNA secondary structural alignment with conditional random fields.
Bioinformatics 2005, 21(suppl 2):ii237–242.

29. Sankoff D: Simultaneous solution of the RNA folding, alignment, and proto-sequence problems.
SIAM J. Appl. Math. 1985, 45:810–825.

30. Mathews DH, Turner DH: Dynalign: An Algorithm for Finding Secondary Structures Common to
Two RNA Sequences. J. Mol. Biol. 2002, 317:191–203.

31. Mathews D: Predicting a set of minimal free energy RNA secondary structures common to two
sequences. Bioinformatics 2005, 21:2246–2253.

32. Hofacker IL, Bernhart SHF, Stadler PF: Alignment of RNA Base Pairing Probability Matrices.
Bioinformatics 2004, 20:2222–2227.

33. Dowell R, Eddy S: Efficient pairwise RNA structure prediction and alignment using sequence
alignment constraints. BMC Bioinformatics 2006, 7:400.

34. Zhang K, Shasha D: Simple fast algorithms for the editing distance between trees and related
problems. SIAM J. Comput. 1989, 18(6):1245–1262.

35. Eddy SR: A memory-efficient dynamic programming algorithm for optimal alignment of a
sequence to an RNA secondary structure. BMC Bioinformatics 2002, 3:18.

36. Dalli D, Wilm A, Mainz I, Steger G: STRAL: progressive alignment of non-coding RNA using base
pairing probability vectors in quadratic time. Bioinformatics 2006, 22(13):1593–1599.

37. Gorodkin J, Heyer LJ, Stormo GD: Finding the most significant common sequence and structure
motifs in a set of RNA sequences. Nucl. Acids Res. 1997, 25:3724–3732.

38. Hull Havgaard J, Lyngsø R, Stormo G, Gorodkin J: Pairwise local structural alignment of RNA
sequences with sequence similarity less than 40%. Bioinformatics 2005, 21:1815–1824.

39. Torarinsson E, Havgaard JH, Gorodkin J: Multiple structural alignment and clustering of RNA
sequences. Bioinformatics 2007, :btm049.

40. Holmes I: A probabilistic model for the evolution of RNA structure. BMC Bioinformatics 2004, 5:166.

41. Holmes I: Accelerated probabilistic inference of RNA structure evolution. BMC Bioinformatics 2004,
5:73.

42. Sakakibara Y: Pair hidden Markov models on tree structures. Bioinformatics 2003, 19:i232–240.

43. Kececioglu J: The maximum weight trace problem in multiple sequence alignment. In Proc. CPM’93,
Volume 684 of LNCS 1993:106–119.

44. Caprara A, Lancia G: Structural Alignment of Large-Size Proteins via Lagrangian Relaxation. In
Proc. of RECOMB’02, ACM Press 2002:100–108.

45. Althaus E, Caprara A, Lenhof HP, Reinert K: A Branch-and-Cut Algorithm for Multiple Sequence
Alignment. Mathematical Programming 2006, 105(2-3):387–425.

29

46. Staple DW, Butcher SE: Pseudoknots: RNA Structures with Diverse Functions. PLoS Biology 2005,
3(6):e213.

47. Dost B, Han B, Zhang S, Bafna V: Structural Alignment of Pseudoknotted RNA. In Proceedings of
RECOMB 2006:143–158.

48. Bauer M, Klau GW, Reinert K: An Exact Mathematical Programming Approach to Multiple RNA
Sequence-Structure Alignment. Tech. Rep. TR-B-07-07, Dept. of Mathematics and Computer Science, Free
University Berlin 2007, [http://www.inf.fu-berlin.de/inst/pubs]. [Submitted to Algorithmic Operations
Research].

49. Klein R, Eddy SR: RSEARCH: Finding homologs of single structured RNA sequences. BMC
Bioinformatics 2003, 4:44.

50. Goldman D, Papadimitriou CH, Istrail S: Algorithmic Aspects of Protein Structure Similarity. In Proc.
FOCS’99 1999:512–522.

51. Notredame C, Higgins DG, Heringa J: T-Coffee: A novel method for fast and accurate multiple
sequence alignment. Journal of Molecular Biology 2000.

52. Wilm A, Mainz I, Steger G: An enhanced RNA alignment benchmark for sequence alignment
programs. Algorithms for Molecular Biology 2006, 1:19.

53. Griffiths-Jones S, Moxon S, Marshall M, Khanna A, Eddy SR, Bateman A: Rfam: annotating non-coding
RNAs in complete genomes. Nucl. Acids Res. 2005, 33:D121–124.

54. Washietl S, Hofacker I, Lukasser M, Hüttenhofer A, Stadler P: Mapping of conserved RNA secondary
structures predicts thousands of functional noncoding RNAs in the human genome. Nature
Biotechnology 2005, 23(11):1383–1390.

55. Edgar RC: MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucl.
Acids Res. 2004, 32(5):1792–1797.

30

