Freie Universitat

bflinks: Reliable Bugfix Links via
Bidirectional References and Tuned Heuristics

Lutz Prechelt (prechelt@inf.fu-berlin.de)

Alexander Pepper, Infopark AG (alexander.pepper@infopark.de)

Freie Universitat Berlin
Institut fir Informatik
Technical Report TR-B-14-01
January 2014

Abstract

Background: Data from software data repositories such as source code version archives and defect databases
contains valuable information that can be used for insights (leading to subsequent improvements), in particular
defect insertion circumstance analysis and defect prediction. The first step in such analyses is identifying defect-
correcting changes in the version archive (bugfiz commits) and linking them to corresponding entries in the defect
database, thus establishing bugfiz links, in order to enrich the content of the defect-correcting change with additional
meta-data. Typically, identifying the bugfix commits in a version archive is done via heuristic string matching on
the commit message.

Research questions: Which filters could be used to obtain a set of bugfix links? How does one set the cutoff
parameters of each? What effect (results loss and precision) does each filter then have? Which overall precision,
results loss, and recall is achieved?

Method: We analyze a comprehensive modular set of seven independent filters, including new ones that make use
of reverse links. We describe and evaluate visual heuristics (based on simple diagnostic plots) for setting six filters’
cutoff parameter. We apply these to a commercial repository from the Web CMS domain and validate the results
with unprecendented precision by making use of a product expert to manually verify over 2500 links.

Results: The parameter selection heuristics pick a very good parameter value in five of the six cases and a
reasonably good one in the sixth. As a result, the combined filtering, called bflinks, proposes a set of bugfix links
that has 93% precision with only 7% results loss.

Conclusion: The modular filtering approach can provide high-quality results and can be adapted to repositories
with different properties.

2 CONTENTS
Contents
1 Introduction

1.1 Design Rationale and Research Contributions
1.2 Context, Quality Criteria e
1.3 Structure of the Article e

Our Version Repository and Bugtracker Data

2.1 Company, Domain, Technology, Development Style
2.2 History of the Version and Bug History
2.3 Data Preparation, Data Size e

Overall Approach and Measurements

3.1 Generators and Filters L
3.2 Related Work
3.3 The Issue of Measuring Recall
3.4 Measurement Metrics L e
3.5 Measurement method e e

Bugfix Link Identification Method

4.1 Generator BM: Bugtracker IDs Mentioned in Commit Messages
4.2 Generator CM: Commit IDs Mentioned in Bugtracker Entries
4.3 Filter FB: Reject Overly Frequent BugzillaIDs
4.4 Filter FC: Reject Overly Frequent Commit IDs
4.5 Filter SB: Reject Small Bugzilla IDs oo
4.6 Filter TT: Reject Major Timetravel

4.7 Filter LU: Reject Late Updates of Bugzilla Entries 10
4.8 Filter UD: Reject All Merely Uni-Directional Bugfix Links 10
5 Tuning, Results, and Discussion 10
5.1 Generator BM: Bugtracker IDs Mentioned in Commit Messages 10
5.2 Generator CM: Commit IDs Mentioned in Bugtracker Entries 10
5.3 Filter FB: Reject Overly Frequent Bugzilla IDs 11
5.4 Filter FC: Reject Overly Frequent Commit IDs 11
5.5 Filter SB: Reject Small Bugzilla IDs o 11
5.6 Filter TT: Reject Major Timetravel e 12
5.7 Filter LU: Reject Late Updates of Bugzilla Entries 13
5.8 Filter UD: Reject All Merely Uni-Directional Bugfix Links 13
5.9 Filter COMBI: Optimized Overall Filtering 13
6 Dbflinks: How To Use the Method in Practice 13
7 Threats to Validity 14
7.1 External Validity e 14
7.2 Internal Validity e 15

8 Conclusions

1 Introduction

The five-level CMMI software process maturity frame-
work (CMMI Product Team, 2010) suggests that soft-
ware processes can be managed towards higher perfor-
mance when driven by software process measurement
data (level 4) and that iterative process optimization
needs to rely on such data (level 5). Unfortunately, ob-
taining process data can be costly unless a high degree
of automation is achieved in collecting and validating it.

Some researchers suggested that we should study how
to systematically exploit existing data stored in software
repositories that we create and maintain anyway, such
as source code version archives, configuration manage-
ment databases, requirements management databases,
defect tracking databases, and possibly even less struc-
tured ones such as wikis and mailing lists. Since 2004 this
idea has sprouted into a regular series of initially work-
shops and now conferences under the name of Mining
Software Repositories (MSR)!; it has produced a wealth
of interesting ideas and approaches.

One of the most potentially useful application areas
when mining software repository data is understanding
defect insertion and defect removal processes (Fairley
and Willshire, 2005). Consequently, a large number of
MSR type works revolve around defects (bugs) in one
way or another. The main repositories of interest for
such works are commonly the source code version repos-
itory (or wversion archive for short, e.g. using CVS, Sub-
version, or Git) and the defect and defect correction his-
tory description database (or bugtracker for short, e.g.
using Bugzilla).

Unfortunately, it is quite difficult to identify defect in-
sertions. The common first step in defect-related MSR
analyses is to identify transactions in the version archive
that correct a defect, usually called bugfiz commits. In
the simplest approach, this is done by scanning the
check-in comments (commit messages) for words such
as “bug”, “fixed”, etc. (Mockus and Votta, 2000), which
is a somewhat unreliable method even with optimal se-
lection terms. An improved and extended approach thus
attempts to connect a bugfix commit to a matching en-
try or entries in the bugtracker that describe the bug
being fixed (Sliwerski et al, 2005b) and whose number
is mentioned in the commit message. If successful, this
also makes much additional data available from the bug
entry to be used for whatever bug-related analysis is in-
tended afterwards (such as time-to-detect, time-to-fix,
severity classes, etc.).

We call such a pair of bugfix commit and bugtracker
entry a bugfir link. Our goal is, given a repository, to
find as many correct (i.e. valid) bugfix links as possible
while avoiding false positives (i.e. invalid ones). We call
our method bffinks; the approach is first generating a set
of candidate bugfiz links and then using a chain of filters

lhttp://www.msrconf .org

to weed out most of the false ones.

For the present study, we define a bugfiz to be the
content of any commit to the version archive whose pur-
pose is primarily to address the issue described in a spe-
cific entry in the bugtracker, no matter whether that
describes a defect or some other type of change request.

1.1 Design Rationale and Research Con-
tributions

This section describes why we set up the study the way
we did and what scientific (certainty-oriented) and engi-
neering (cost/benefit-oriented) contributions we claim it
to make:

(1) Previous studies on linking commits to issue re-
ports have mostly considered open source software sys-
tems only (as opposed to commercial closed source).
Most of the few uses of closed source data in MSR, works
are either vague with respect to the origin and nature of
the data (e.g. Bachmann and Bernstein (2009a) or Iss-
abayeva et al (2012)) or do not contain specifics such as
concrete defect counts etc. (e.g. Nagappan et al (2008)).
Where the same MSR technique has been evaluated for
both open source repositories and commercial reposito-
ries, quite different results have sometimes been found,
e.g. by Luijten and Visser (2010) versus Issabayeva et al
(2012). For bugfix link determination, it has not yet been
considered that closed source development processes are
different from open source ones and the resulting reposi-
tories might thus have different characteristics that could
perhaps be exploited for finding bugfix links. In the
present work, we therefore consider the following to be a
scientific contribution: We present results from a closed
source SVN and Git version repository; we describe both
the product and the process from which it originates
and also include concrete numbers (Section 2); we ana-
lyze the repository in depth and look for ways to extract
bugfix links that differ from the ways previously used for
open source data. This contribution represents a trade-
off against the possibility of publishing the raw data (for
full reproducibility) as it can be done for open source
data.

(2) We do indeed find a characteristic in our data that
has not previously been used: reverse links (pointing
from a bugtracker entry to a commit). To exploit it,
we introduce new filtering heuristics (Sections 4.4, 4.6
and 4.8) one of which turns out to greatly improve the
overall result (Section 5.9). We consider this an engi-
neering contribution.

(3) We describe and analyze the filters individually so
they can be used in a modular fashion and users can un-
derstand for what types of repository it might be sensible
to use or not use certain filters (Section 5). Compared
to previous works that lump several generation and fil-
tering heuristics into one single monolithic step, this is
a scientific and engineering contribution.

4 2 OUR VERSION REPOSITORY AND BUGTRACKER DATA

(4) For some bugfix link candidates, it is difficult to un-
derstand whether they are valid or not. We aim at being
always correct in this judgment by emploing a company
insider product expert who manually checked more than
2500 bugfix link candidates carefully (Section 3.5). This
is important because some of the filters affect only small
numbers of bugfix link candidates and so even a hand-
ful of overlooked or additional bugfix links could distort
these filters’ quality assessment results massively. The
wording with which previous works describe their vali-
dation effort often points to much less thorough proce-
dures. For example, Bachmann and Bernstein (2009a)
says “[...] manual inspection for false positives e.g.[sic!],
whether there are identified bug report numbers which
can not be truly a bug report link.” and Sliwerski et al
(2005b) even performs no overall manual validation at
all: “Based on a manual inspection of several randomly
chosen links [...], we decided to use only those links
whose syntactic and semantic levels of confidence satisfy
the following condition: [...]” We therefore consider
the unprecedented accuracy of our results to be a scien-
tific contribution. This contribution represents a trade-
off against the possibility of assessing the bugfix finding
method using a broader set of multiple repositories.

(5) Most filters involve a cutoff threshold or similar
settable parameter. Successful use of the filtering chain
requires adjusting these parameters to the characteris-
tics of the given repository, because unsuitable settings
can utterly ruin the filter chain’s performance. To our
knowledge, our work is the first to provide guidance for
this step; we describe meta-heuristics for setting the fil-
tering heuristics’ cutoff parameters in Sections 5.3 to 5.7.
As we know of no other work that describes how to se-
lect parameter values?, we consider this an engineering
contribution.

(6) While a scientific study of bugfix link identification
will perform extensive manual validation of the results, a
practicing engineer can at best afford manual validation
for a small sample. We therefore sketch the overall pro-
cedure how one would apply bflinks in practice without
a comprehensive manual validation and discuss how to
adapt to different properties of the repository at hand
(Section 6). We consider this our main (engineering)
contribution, the others being sort of an infrastructure
for it.

Furthermore, we explain why absolute measurements
of recall are problematic (Section 3.3) and propose the
use of relative measures (results loss, in our case) as a
replacement (Section 3.4).

2Most do not even assure the reader that the values used have
been obtained without looking at the resulting performance, which
means they may involve overfitting and thus exaggerate the true
performance of the method.

1.2 Context, Quality Criteria

This work was started by a company, Infopark AG, with
the intention of achieving insights regarding their own
defect insertion and removal processes that could be
turned into process improvements.

It was planned to (1) identify bugfix commits, (2) es-
tablish their bugfix links, (3) identify the corresponding
bug commits (defect insertions), and (4) analyze them
for interesting patterns.

Steps 3 and 4 turned out to be infeasible?, so this work
reports on steps 1 and 2 only.

Infopark identified incorrect conclusions as a major
risk in this work, as those might lead to fruitless pro-
cess change effort or even counterproductive process
changes. Therefore, Infopark required that the analysis
methods should be chosen such that their recall* would
be about 50% or higher (to avoid irrepresentativeness)
and their precision® would be at least 80% or preferably
90% (to avoid distortion from misleading false positives).
Such data quality requirements are sensible because it is
known that the results at least of defect prediction anal-
ysis are sensitive to biases in their input data (Bird et al,
2009) and that the completeness of bugfix links tends to
be low (Bird et al, 2009; Bachmann et al, 2010), which
makes bias likely.

We perform the study on only Infopark’s repository
rather than several because accurate assessment of pre-
cision requires the correct manual classification of many
commits — which requires background knowledge of the
respective product and its development practices.

1.3 Structure of the Article

We will proceed to describe more fully the context in
which Infopark’s repository was created (Section 2), our
overall approach and its related work (Section 3), the
specific bugfix link identification methods investigated
(Section 4), the results thus obtained (Section 5), and
the procedure for applying the overall method to an-
other repository (Section 6). We finally discuss threats
to validity (Section 7) and present our conclusions in
Section 8.

2 QOur Version Repository and
Bugtracker Data

2.1 Company, Domain, Technology, De-
velopment Style

Infopark is an early WWW company. Founded in 1994,
it built the first version of its main product CMS Fiona

3An article about how and why is in preparation

4Recall: The fraction of all valid objects of the overall set that
appear in the subset that was found.

5Precision: The fraction of all objects in the subset found that
are valid.

2.2 History of the Version and Bug History

in 1997. CMS Fiona is a content management sys-
tem (CMS) aiming at large-scale and high-traffic web
sites with both static and dynamic parts. Its particular
strengths lie in consistency-keeping for static content.
Two other products represented in our repository data,
the Online Marketing Cockpit and an internal product,
are so much smaller that they hardly influence the results
of our investigation at all.

Infopark has always been very open for innovation not
only in its products but also in the technologies and pro-
cesses it used for building them. Therefore, the data
investigated represents, over time, a multitude of both
technical platforms for managing it and programming
languages used. CMS Fiona was originally started in
Objective C, then extended in Tcl, then largely trans-
formed into Java and is recently being extended and
partially reimplemented in Ruby for central hosting in
the cloud.

The following properties of Infopark will be relevant
for the current study:

e In the CMS domain, feature requests are very fre-
quent and there is no clear line between avoidable
bugs and feature requests. Consequently, Infopark
often treats the implementation of small improve-
ments to the functionality just like bugs and such
improvements represent a substantial fraction of our
“bugfix” data. Because feature requests typically
involve more code than ordinary bugfixes, our data
contains many non-small bugfixes.

e Infopark has always had low turnover of staff and
was therefore able to follow intended processes and
good practices stably. In particular:

e The commit message of a bugfix commit typically
mentions the number of the corresponding bug-
tracker entry, and

e when closing a bugtracker entry, a comment will
often be added that mentions the version number of
the corresponding bugfix commit.

2.2 History of the Version and Bug His-
tory

The earliest version archive data that is available for our
analysis starts in the year 2000 and takes the form of a
Concurrent Version System (CVS) archive. In late 2003,
Infopark switched to Subversion (SVN) as the version
archive software and in 2008 it switched to Git. In both
transitions, the new archive started with a snapshot of
the old archive’s main branches; the previous revision
histories were not migrated but the old archives have
been preserved.

The only bug tracking data that is still available (and
extends until the present) comes from an instance of

Bugzilla which contains one single continuous bug his-
tory; it was introduced in early 2003 and so matches
only a fraction of the CVS version archive® but all of the
SVN and Git archives.

2.3 Data Preparation, Data Size

For the analysis presented here, we created one single
continuous Git archive that covers all commits (includ-
ing branches) from the Infopark CVS and SVN and Git
archives which contain 25653, 14694, and 5261 com-
mits, respectively; more than 45000 commits overall,
created over roughly 11 years of development. We added
artificial bridging commits leading into each initial state
of each subsequent sub-repository; we kept all original
version identifiers (and in fact all relevant metadata used
in our analysis) in a separate database as extracted by
the MininGit” software (a fork of CVSAnalY (Robles
et al, 2004)), to which we contributed a number of im-
provements during the debugging phase of the extraction
process.

Since we are interested in bugfixes and those are de-
fined to relate to bugtracker entries, we use only those
commits leading towards the product releases made
since the introduction of Bugzilla. These data consist
of 31854 commits which represent a total of 263033
file-level deltas comprising 21995065 line-changes alto-
gether. Only 2% of the commits are lacking the commit
message.

The Bugzilla database contains 9444 bug entries with
a total of 46302 comments. 60% of the entries are
marked as repaired, 9% as duplicates, and 24% as in-
valid or “works for me”. According to results reported
in (Bachmann and Bernstein, 2009b), these are ordinary
values.

3 Overall Approach and Mea-
surements

Our approach for establishing a set of bugfix links con-
sists of two methods for generating candidate bugfix links
(high recall, low precision) and several filters for rejecting
some of those candidates in order to improve precision
at a hopefully small loss of recall.

3.1 Generators and Filters

The two generator methods are

e BM: searching for IDs of bugtracker entries men-
tioned in commit messages, and

e CM: searching for IDs of commits mentioned in
bugtracker entries.

SFor reasons described in Section 4.2, we eventually left the
CVS part out of the analysis altogether.
Thttps://github.com/SoftwarelntrospectionLab/MininGit

The filters are

e FB (“frequent Bugzilla IDs”): Reject all candidates
that involve a Bugzilla ID which occurs in many
other commit messages as well.

o FC (“frequent commit IDs”): Reject all candidates
that involve a commit ID which occurs in many
other Bugrzilla entries as well.

e SB (“small Bugzilla IDs”): Reject all candidate
Bugrzilla IDs that are small.

e TT (“time travel”): Reject all candidates that vi-
olate causality by having a referencing point that
was written before the referenced point existed.

o LU (“late update”): Reject all candidates where
the bugzilla update (if any) occurs an overly long
time after the corresponding commit.

e UD (“unidirectional”): Reject all candidates where
only one direction of bugfix link reference is avail-
able (either from Bugzilla to commit or from commit
to Bugzilla, but not both).

If it appears appropriate for a given dataset, any one
of the filters could be left out, so the approach is cus-
tomizable. Before all of these, the filter NX, “reject all
candidates whose commit ID or Bugzilla ID does not ex-
ist”, is implicitly applied as a trivial and flawless first
filtering stage.

3.2 Related Work

Early works that mined bugfix data involved a sin-
gle repository only, the version archive, and so would
work by means of string matching on commit messages
for terms such as “bug”, “patch”, “fix” etc. only, e.g.
(Mockus and Votta, 2000). Even recent research some-
times takes this approach if details about the nature of
the defect are not of interest and thus no bugfix links
need to be formed, e.g. (Sadowski et al, 2011).

Since it was introduced by (Fischer et al, 2003), more
advanced approaches connect the version archive infor-
mation to the bugtracker information and so involve
bugfix links in the sense used here and hence possibly
also some filters such as NX, FB, SB, TT, LU, or sim-
ilar ideas, e.g. in (D’Ambros et al, 2011; Bachmann
and Bernstein, 2009b; Bird et al, 2009; Kim et al, 2007,
Sliwerski et al, 2005a,c).

The present article appears to be the first report in-
volving backward links and the corresponding filters FC
and UD.

ReLink (Wu et al, 2011) extends a simple search for ex-
plicit links (based on refined string pattern search, filter
NX, and “fixed” status of the bugtracker entries) with a
search for implicit ones: It radically considers every pair
of a commit and a bugtracker entry to be a candidate

3 OVERALL APPROACH AND MEASUREMENTS

bugfix link and then uses three filters to cut these down
to sensible ones:

e First, a combination of TT and LU.

e Second, the requirement that the author of the com-
mit must also be a (co)author of the bugtracker en-
try.

e Third, sufficient textual similarity (TS) between
the commit message and the description and com-
ments in the bugtracker entry. For the latter, Re-
Link employs stemming, stop-word elimination, and
thesaurus-based word unification to reduce the vo-
cabulary and then applies the cosine text similarity
metric. The idea is that if no bug ID is provided
in the commit message, it will instead talk about
topics (such as failure symptoms or class or method
identifiers) that are also mentioned somewhere in
the (typically much longer) bugtracker entry.

MLink (Nguyen et al, 2012) goes still one step farther by
also taking into account similarity of source code frag-
ments and other text mentioned in the tracker entry with
the actual commit source code content.

MLink and ReLink are very clever ideas, which could
nicely be combined with the ideas of bflinks: When a
dataset has a great deal of explicit bugfix links (as the
Infopark data does) bflinks will work well, while for other
datasets ReLink and MLink can improve the otherwise
low recall with hopefully sufficient precision.

Note, however, that ReLink’s LU and TS both require
cutoff parameters and that their values are extremely
critical for good precision because of the huge number of
incorrect candidate links that need to be rejected.

This is not a small issue. For instance the smallest of
the three datasets investigated, ZXing, has 1694 com-
mits and 135 fixed bugs, hence over 220000 candidate
bugfix links. The reported precision is 91% (107 of 118
correct); but if less appropriate parameter settings would
result in only an additional 1% of the incorrect candi-
dates getting through, precision would drop to 4.6% (107
of 2318 correct). For the largest of the datasets, Apache,
the equivalent drop in precision would go from 75% to
0.016%°.

Unfortunately, in the published form of ReLink just
this critical parameter setting is unsound: The pub-
lished algorithm involves a fine-grained search of the
parameter space. The best parameter values are iden-
tified by measuring the resulting precision and recall via
a ground truth dataset (“golden set”). This procedure
is impossible in a real application as the ground truth is
not normally known — if it was, ReLink would not even
be needed. Therefore, the published performance fig-
ures are based on near-optimal parameter settings that

80nly 0.06% of the commits from the Apache dataset, the 493-
commit Linkster subset, are actually used in the article. Its Table 3
is misleading in this respect, consult the original article (Bachmann
et al, 2010).

3.3 The Issue of Measuring Recall

could not be achieved by a real user and are hence over-
optimistic.

Until a proper method for tuning the ReLink cutoff
parameters is devised, we can therefore perform neither
a combination nor a comparison of bflinks and ReLink.

MLink shares a similar problem, if less strongly: The
authors present in detail what they call an “unsuper-
vised hill-climbing algorithm”® requiring ground truth
for setting the threshold parameters, but do not state
what data they fed it. At least they use just one fixed
set of parameters for all of their four benchmark datasets
afterwards.

3.3 The Issue of Measuring Recall

Bugfix link identification is a form of information re-
trieval: From among all conceivable links, find all correct
ones.

If the output of such a search is not too large, mea-
suring its precision is practical: Manually assess each
output and classify it as correct or incorrect.

Measuring recall, however, is generally difficult be-
cause it involves assessing all conceivable links. Unless
this base set is rather small, complete manual assess-
ment (and hence reliable determination of recall) is not
feasible.

For instance determining the ground truth for the
smallest dataset in the ReLink article involves checking
220000 pairs. Even at an unlikely fast speed of 15 sec-
onds per pair, true individual checking of each pair would
take half a person-year of effort. It appears unlikely the
authors have invested this much effort for determining
their “golden set” (and then another). Instead, they
will have performed a reduced, heuristic checking, which
opens possibilities for overlooking correct bugfix links —
and at a determined bugfix link density of only 0.065%
(143 links) the fraction of overlooked ones can easily be
quite large. For the Infopark dataset, establishing a com-
plete ground truth would even involve checking over 300
million pairs (or 700 person years at 15 seconds apiece).

So alternative approaches to complete manual check-
ing have to be devised in a domain-dependent man-
ner. See for instance the ingenious approach taken by
the TREC text retrieval contest (Voorhees and Harman,
2000) that exploits the fact that many different answers
(from different retrieval systems) are available for the
same set of queries.

In the bugfix link identification domain, we see four
approaches that have been used to obtain estimates of
recall.

1. Heuristic manual checking aiming at a good ap-
proximation of the complete ground truth for small
repositories (ZXing and Openlntent of ReLink).

9which happens to be neither unsupervised nor doing hill-
climbing

This approach will be inaccurate if too many links
are overlooked.

2. Tool-supported manual checking by a project expert
alming at a good approximation of a partial ground
truth for a large repository (Linkster/Apache of Re-
Link). This case stems from (Bachmann et al, 2010)
and covers 6 weeks (493 commits) of the Apache
project only. This approach will be inaccurate if
too many links are overlooked or the chosen time
period is not representative for the project over-
all. Partial checking of a random sample would be
much harder for the expert because of the loss of
context-carryover due to the non-consecutiveness of
the commits.

3. A survey aiming at a rough estimate of overall re-
call for a very large repository. This was used at
Infopark and will be described in Section 3.5 and
evaluated in Section 5.2. The survey approach is
inherently imprecise and likely inaccurate. It serves
as a low-cost way to obtain a ballpark figure for
recall from existing relative measures.

4. Relative measures similar to recall (results gain for
augmentation methods such as ReLink, results loss
for filtering methods such as bflinks). This approach
avoids the need for a ground truth completely and
instead requires only the checking of links proposed
(perhaps at some internal stage) by the respective
system. It will be described in the next subsection.

It is feasible to avoid relying on ground truth datasets for
bugfix link identification: For research purposes, relative
measures are often sufficient for comparing different sys-
tems and much cheaper than establishing ground truth.
For practical engineering purposes, the survey method
is sufficient for classifying recall as good enough or not
good enough and again cheaper than establishing ground
truth.

We go on to describe the measures we use in the
present study to characterize the quality of the individ-
ual bflinks filters.

3.4 Measurement Metrics

After the generators, the filters can be used individually
or in arbitrary combination. Assume we have as input N
generated candidate bugfix links of which C are correct
and W are wrong. N = C + W. After filtering, we are
left with an output of n proposed bugfix links, of which
c are correct and w are wrong. n = ¢+ w. For a certain
combination of generators and filters we speak of overall
precision (op) as our main quality metric: What frac-
tion of the proposed bugfix links represents true, valid
bugfix links? op = ¢/n We would also like to know over-
all recall (or): What fraction of all true, valid bugfix
links are actually returned after filtering? or = ¢/C.

Determining C involves checking all N candidates and
is hence extremely laborious'®. Therefore, or is usually
only approximated.

For a given filter or filtering chain, we also speak of

e filtering precision (fp): What fraction of the items
rejected by the filter are indeed false positive can-
didates as intended? Do not let the term confuse
you; overall precision talks about the output, but
filtering precision talks about what does not appear
in the output: fp = (W —w)/(N —n). 100% fil-
tering precision means no correct candidate is re-
jected. A filter will always improve overall preci-
sion if its filtering precision is better than 50% and
lower-precision filters can improve overall precision
if overall precision is already high.

o filter strength (st): What fraction of all candidates
is rejected by the filter? st = (N —n)/N. A filter
may have high precision itself, but still little positive
impact overall because of low strength.

o results loss (1): What fraction of all candidate links
is filtered out that was valid links? This is just
a combined effect of filtering precision and filter
strength but shown separately for clarity. It is in-
dependent of the overall recall and thus more prac-
tical to determine, but makes a statement of a sim-
ilar kind. Example: A filter with strength 50% and
filtering precision 70% will (by means of the 30%
falsely rejected candidates) produce a results loss of
15%. Generally: rl = st- (1 — fp).

The next subsection describes how these metrics were
operationalized.

3.5 Measurement method

For measuring any of the above metrics we need to
know which candidates are actually valid ones. This can
only be determined by applying human judgment and
background knowledge, so that manual assessment is re-
quired. For this study, we have manually checked over
2500 (52%) of our candidate bugfix links. More precisely:
A long-term member of the Infopark development team
has individually looked at these pairs of defect database
entry and commit message and consulted the source code
diff and/or colleagues where necessary in order to make
a reliable decision whether a pair forms a true bugfix link
or not.

For our research goal of understanding the precision
achieved, these 52% would ideally have been a random
sample. However, Infopark pursued an engineering goal:

101t is actually even worse as a fully meaningful or result needs
to be based on C’, not C, that is, on the conceptual number of
all correct bugfix links, including even those not proposed as can-
didates by the generators (e.g. because no hint to the bugtracker
entry is included in the commit message), which is even more thor-
oughly impractical.

4 BUGFIX LINK IDENTIFICATION METHOD

maximize precision without sacrificing too much recall.
For this purpose, the checking exclusively covered items
to be possibly rejected by the filters'!, so as to make the
filters sufficiently strong, but not too strong.

Unless the filters are idiotic, these candidates will con-
tain a higher density of invalid bugfix links than the rest
of the population and our sample is thus biased. The
overall precision assessment from this biased sample is
pessimistic and the resulting estimates of overall preci-
sion op, (unless they are very high (> 95%), so that
stochastic error could play a role), will be lower than the
correct ones. Since we check all of the possibly rejected
candidates, the measurement of filtering precision fp is
fully accurate.

No such “will be pessimistic” argument is available for
overall recall or. So in order to avoid estimates whose
bias is unknown, we rely on results loss 7l instead which
only relies on accurate measurements and is therefore
also accurate.

For obtaining at least a very rough estimate of recall
in order to check whether Infopark’s 50% recall require-
ment is fulfilled, we performed a quick, informal survey
of four long-time Infopark developers, asking (a) What
percentage of all commits are primarily bugfix commits?
and (b) What percentage of those has a corresponding
Bugzilla entry? We compare the outcome to the number
of bugfix links we found.

4 Bugfix Link Identification

Method

This section explains the generator methods, filters, and
tuning parameters in detail.

4.1 Generator BM: Bugtracker IDs

Mentioned in Commit Messages

Infopark was interested in complete bugfix links only,
not in solo bugfix commits without a corresponding link
to a bugtracker entry. We therefore made the following
early (and quite radical) decision with respect to our
analysis of the commit messages: We would not perform
any keyword string matching on the commit messages
(for terms such as “bug”, “defect”, “fix” etc.) at all.
Instead, we would only look for integer'? numbers that

1A certain parameter value was picked early on (before the de-
velopment of the parameter tuning heuristics) and all candidates
that would be filtered out with this parameter value were man-
ually validated. This produced 100% checking coverage for most
filter /parameter variants reported in this article but somewhat less
for some of them. Due to the candidates with validity status “un-
known” (which are removed from the computations), the algebraic
relationships that conceptually hold between the various statistics
are only approximately correct. Filter UD, as introduced in Sec-
tion 4.8, is special: here we checked the accepted items rather than
the rejected ones, for reasons described in Section 5.9.

12Most entries are not just integers such as “1234” but rather
strings such as “#1234” or “BZ1234” or similar forms. However,

4.2 Generator CM: Commit IDs Mentioned in Bugtracker Entries 9

represented existing Bugzilla entry IDs, assume that this
number constitutes a bugfix link, and then validate the
correctness of that link as best we can.

Requiring some keyword matching in addition would
improve the precision of the results at the expense of
lower recall. It is quite plausible that careful application
of keyword matching could improve our results some-
what, but we did not investigate this in the present study
and rather present the results of a “pure” bugfix link
search instead.

4.2 Generator CM: Commit IDs Men-
tioned in Bugtracker Entries

This numbers-based search approach and the disciplined
Infopark development culture suggest a second data
source for bugfix links that we have not yet seen ana-
lyzed in the literature yet: If commit messages might
contain numbers refering to bugtracker entries, why
not also look in bugtracker entry comments for num-
bers referencing commits (version numbers)? We use
all strings that look like the IDs of an existing ver-
sion as candidate bugfix links as well. These IDs look
very different for each versioning system: For CVS
they are either single-dotted numbers (on the trunk,
e.g. 1.23), or triple-dotted (etc.) numbers (on a
branch, e.g. 1.23.1.7); for SVN they are integers, at
Infopark preceded by “r” (e.g. rl722; we accept “R”
as well); for Git they are 40-digit sedecimal strings (e.g.
6050732e725c68b83¢35c873{18808dff1c406€2).

SVN and Git version IDs are unique for the whole
repository and so are easy to resolve. CVS version IDs,
however, are local per file, so resolving them requires
finding the corresponding filename and perhaps (where
filenames are not unique themselves) even pathname.
This is much more difficult, hence quite error-prone, and
often even impossible. Since we have only a few months
worth of CVS data, we decided not to bother and leave
the CVS part of the history out of our analysis entirely.

The union of these two data sets of candidate bugfix
links (from commit messages and from bugtracker entry
comments) form the basis for the subsequent filtering
steps. Such filtering is very important: Bugzilla IDs in
particular will be polluted with plenty of false positives
from port numbers, RFC numbers, percentage numbers,
time measurement numbers, and many other kinds. The
version IDs, although far less confusable, will also have
false positives, because they may be mentioned in other
roles than the bugfix link role (e.g. “defect was validated
to be still present in r123”). Our study will investigate
the following filtering criteria.

there was no fixed rule in place at Infopark in this regard and so
we decided to go for all integers (as also suggested by (Bachmann
and Bernstein, 2009a)) to maximize recall and repair the precision
penalties by filtering. This worked well.

4.3 Filter FB: Reject Overly Frequent
Bugzilla IDs

An integer number found in a commit message that is
really the ID of a Bugzilla entry will occur only in one
or possibly a few different commit messages (for difficult
bugs, needing multiple complementary fixes or fixes of
fixes), but not in many.

Heuristic FB: Consider all bugfix links established
by a Bugzilla ID ¢ in a commit message to be invalid
if that Bugzilla ID ¢ appears in fp or more different
commit messages. Choose a suitable cutoff frequency

fB.

4.4 Filter FC: Reject Overly Frequent
Commit IDs

Even more dubious is the same commit ID appearing in
multiple different Bugzilla entries, because Infopark does
not often check in multiple bugfixes in a single commit.
Therefore, multiply appearing commit IDs probably in-
dicate something other than a bugfix (such as an alpha
release).

Heuristic FC: Consider all bugfix links established
by a commit ID ¢ in a Bugzilla entry to be invalid if that
commit ID 4 appears in fo or more different Bugzilla
entries. Choose a suitable cutoff frequency fc.

4.5 Filter SB: Reject Small Bugzilla IDs

Small integers found in commit messages will very often
not be Buzilla IDs at all but rather other things such as
percentages, HT'TP status codes, buffer sizes, item num-
bers, etc. Since such numbers tend to occur repeatedly
with the same value, rejecting them should improve pre-
cision. It will also not hurt recall much, because only
few proper Bugzilla IDs are mentioned more than once.

Heuristic SB: Reject all candidate Bugzilla IDs
smaller than a minimum mpg. Choose a suitable min-
imum.

4.6 Filter TT: Reject Major Timetravel

It makes no sense to assume that a commit C' made
at time t(C) references a bugtracker entry B that was
created only at a later time ¢.(B), because the author of
the commit message would not be able to reliably predict
the ID of that later entry; such a bugfix link violates
causality. Likewise, the same is true for bugtracker entry
updates B (comments) added at time ¢, (B) that appear
to reference commits C' made only at a later time ¢(C).

There are three exceptions to these rules: (1) Git has
a feature called 'rebase’ that allows to create time-travel
effects at will by removing a commit from the history
and re-inserting an equivalent one at any other point
into the history. In practice, this is used for eliminating
branches and the re-insertion will be at a later time, not

10

an earlier one. Also, the commit changes its ID. So this
is not a problem. (2) Git allows changing the content or
timestamp of a commit message later. This feature is not
normally used at Infopark, so this is not a problem either.
(3) If the time difference is only small, it might be due to
a misalignment between the bugtracker server clock and
the version archive server clock'®. We therefore accept
references into the very near future (a few minutes), but
not into a farther future, as those could only be valid
in the presence of lucky guessing or time travel — and
history teaches that both of these are not common in
software development.

Heuristic TT: (C) For bugfix links established by a
commit message C, consider them invalid if ¢(C) +t,,, <
t.(B). (B) For bugfix links established by a Bugzilla
entry B, consider them invalid if ¢,(B) + t,, < t(C).
Choose a suitable clock misalignment tolerance t,,.

4.7 Filter LU: Reject Late Updates of
Bugzilla Entries

If a commit C is referenced from a Bugtracker entry B
at all, we would expect that reference to appear shortly
after the commit: usually only minutes later, possibly
hours, or potentially the next day, but probably not later
than that because the developer would simply forget to
add it. This is true for both previously existing Bug-
tracker entries (the normal case) as well as entries cre-
ated post-hoc (after the commit), in which case the ref-
erence might even appear in the initial bug description
rather than a subsequently added comment.

Heuristic LU: (B) For bugfix links established by
a Bugzilla entry B, consider them invalid if t,(B) >
t(C) + ty. Choose a suitable maximum wait time t,,.

4.8 Filter UD: Reject All Merely Uni-
Directional Bugfix Links

Any single bugfix link may be spurious and the above
heuristics attempt to identify it as such in a context-free
manner, without looking at any other link. However, as
there are tens of thousands of commits and thousands of
bugtracker entries, it is unlikely that a spurious bugfix
link from, e.g., commit C to bugtracker entry B has an
also spurious counterpart in B accidentally pointing to
C. If we require both of these links to exist, we can expect
them to be valid.

This is a potentially ruinous filter: Unless it is common
in the development organization to mention commit IDs
in bugtracker comments, the rule will be far too strict
and will result in extremely low recall. In the Infopark
case, however, it turns out to be practical and should be
considered because it promises high filtering precision.

13When first creating a Bugzilla entry, Bugzilla will not hand out
its ID (e.g. at the beginning of editing) before the time recorded
as the entry’s creation time.

5 TUNING, RESULTS, AND DISCUSSION

Also, this filter does not require a tuning parameter to
be chosen.

5 Tuning, Results, and Discus-
sion

This section describes how we select the tuning parame-
ters of the filters and what performance is thus obtained
with each. The methods for choosing each tuning pa-
rameter do not use the ground-truth knowledge from
our manual assessment of the candidates, but rather are
procedures as they could be applied by any engineer at-
tempting to perform a good search for bugfix links au-
tomatically. These procedures are based on simple diag-
nostic plots and invoke human judgment, so that relevant
background knowledge is not thrown away if the engineer
has such knowledge. We will describe this reasoning for
each filter.

In each case, we will describe three choices of param-
eter: (1) A loose choice, which emphasizes filtering pre-
cision so as to minimize results loss. (2) An aggressive
choice, which emphasizes strength as long as filtering
precision is still over 50%. If successful this should re-
sult in a larger improvement of overall precision, but also
in higher results loss; if unsuccessful, the filter might ruin
recall and hurt overall precision at the same time. (3) A
default choice, which trades off these two risks.

Subsection 5.9 discusses how the filters should be com-
bined and what performance is thus achieved overall.

5.1 Generator BM: Bugtracker IDs

Mentioned in Commit Messages

Generator BM suggested 4037 candidate bugfix links.
These have a precision of 79%.

5.2 Generator CM: Commit IDs Men-
tioned in Bugtracker Entries

Generator CM suggested 3015 candidate bugfix links.
These have a precision of 60%.

Both generators combined suggested 5005 candidate
bugfix links (of which 2047 are bidirectional). These
5005 have a precision of 73%, the starting point of our
filters’ precision improvement work.

Recall: The mean answers in our survey (as described
in Section 3.5) suggested 35.8% of all commits to be bug-
fix commits'* and 71% of those to have a corresponding
Bugzilla entry. Our data covers 19955 commits. If we
assume the survey answers reflect the same notion of
bugfix as our data, at 100% recall the data should pro-
vide 5072 unique bugfix link candidates. It does provide

14T his value has a very high standard error of the mean of 15.1%,
so the resulting recall estimate is unstable. But no better one is
available.

5.3 Filter FB: Reject Overly Frequent Bugzilla IDs

o
8 e
N
8 8 _
o 9
=
[$)
3 8 _|
5 9
2
IS S 4 e
= s}
c
°
o — ® 9000 838 o o
TTTTTTTT 7T 1T T 1
1 3 5 7 11 15 19

FB: frequency of BID

Figure 1: How many Bugzilla IDs (y axis) are referenced
exactly x times

5005, which have a pessimistically estimated precision
of 73%, so there are at least 3653 correct ones and the
estimated initial recall is thus estimated as at least 72%.

Subsequent filtering produces results loss and so will
diminish recall; see Section 5.9 for the eventual final
value of recall.

5.3 Filter FB: Reject Overly Frequent
Bugzilla IDs

For choosing fp, i.e. how often a Bugzilla ID must occur
to be filtered out, we plot in Figure 1 how often each
referencing frequency occurs and reason that only rare
amounts of repetition can safely be filtered out. The plot
suggests 5 as the loose choice (looking to lie barely above
the zero line), 3 as the aggressive choice, and we pick the
reasonably safe-looking 4 as default choice.

It turns out that 3 is in fact overly aggressive and re-
sults in a filtering precision of only 39% and a hurtful
results loss of 12%. 4 (and 5) work alright at filter-
ing precision 50% (60%) and resulting results loss of 6%
(3%). All three parameters nevertheless result in the
same overall precision of 77% so the loose choice would
have been clearly best in this case.

For a complete overview of the performance statistics
for the default parameter choice of all the filters, please
refer to Table 1.

5.4 Filter FC: Reject Overly Frequent
Commit IDs

Analogously, for choosing f¢, i.e. how often a commit ID
must occur to be filtered out, we plot in Figure 2 how of-
ten each referencing frequency occurs. Considering that
candidate commit IDs found are very likely really com-
mit IDs (as opposed to candidate Bugzilla IDs which are
just integers) we decide to tread a lot more carefully here
and to not consider 2 as the agressive choice. We select

11
8 [+
Yo}
N
%]
a _
O
K= o
[} o _l
3 5
G
° i
£
2 8 -
O—.QCO o3 ®
T T T I I
1 3 5 11 17

FC: frequency of CID

Figure 2: How many commit IDs (y axis) are referenced
exactly x times

a2

Az Lo

density (for 0...2000)

S L HO R

I I I I I
0 500 1000 1500

SB: Bugzilla ID

Figure 3: Density of the occurrence of small and medium
small candidate Bugzilla IDs. The boxplot shows per-
centiles 10, 25, 50, 75, 90. The density estimator was
computed by the density function of the R statistical
software system (version 2.12) using default parameters.

3 as the aggressive and default choice and 4 as the loose
choice.

It turns out that this filter is very precise: Filter-
ing precision for 3 (4) is 96% (99%). However, as the
strength is only 4% (2%), the impact of the filter is mod-
est, with results losses below 0.3% and overall precision
of 77% (76%).

5.5 Filter SB: Reject Small Bugzilla IDs

We plot the density of Bugzilla IDs. For readability we
restrict the plot to maximum 2000 (this covers the the
bottom 26% of all IDs) and obtain the plot shown in Fig-
ure 3. There is no obvious cutoff point, but several can-
didates. The first would be the peak of the distribution
at about 130, then the first turning point around 350,

12

RIS R

density for —4...4 hours

TT(B): amount of time travel (-4...0 hours)

Figure 4: Time difference from creation of Bugzilla entry
to time of commit that mentions it.

| | ! | |
4
>
2 Bugzilla SVN Comment
~
¥
=
L
2
Z) Bugzilla Git Comment
()
T
I I I I I
-4 -2 0 2 4
TT(C): amount of time travel (=4...0 hours)
Figure 5: Time difference from commit to time of

Bugzilla comment that mentions it.

the second peak at around 600, and the second turning
point around 750.

We choose 130 as the loose choice and 750 as the agres-
sive choice. Considering that the raw data values look
like a good mix of quite a few different values (rather
than just a very few values occuring over and over), we
decide not to be too agressive and pick 350 as default
choice. The mix of many different values also means the
filter will not overlap too strongly with FB.

These considerations are all quite valid and success-
ful: Filtering precision of the loose/default/agressive
choice is 92%/81%/56%, the resulting overall precision
is 78%/81%/81%, so being aggressive is not helpful in
this case. Results loss is 0.3%/1.3%/5%.

5.6 Filter TT: Reject Major Timetravel

We expect the time travel filter to work perfectly once
we account for a few minutes of clock drift. However,
the two diagnostic plots used each hold a surprise. Fig-

5 TUNING, RESULTS, AND DISCUSSION

density

0 20 40 60 80

LU: hours from commit to Bugzilla update

Figure 6: Time from commit to the appearance of its
mention (if any) in a Bugzilla entry

ure 4 reveals massive occurrence of time travel of about
1 hour and even more of about 2 hours. This indicates
a timezone error on the servers. Infopark is in timezone
GMT+1 in winter and GMT+2 during daylight saving
time. Apparently the version archive runs on correct
time but the Bugzilla server’s clock is one or two hours
in the future (e.g. runs on local time but claims it to
be GMT). So when a Bugzilla entry is created it will be
recorded as two hours later than true so that a fast subse-
quent commit mentioning its ID appears in the past. As
for actual timedrift, the minimum value is 2.08 hours, in-
dicating 5 minutes maximum drift. We choose 2.1 hours
as our loose, default, and aggressive parameter value for
the clock misalignment ¢, for TT(B).

Figure 5 reveals something else to be odd in our data:
The plot shows the time until a commit is mentioned
in a Bugzilla comment. It should indicate the opposite
effect: If the timezone problem was present throughout
the lifetime of our data, nobody should (appear to) be
able to mention a commit faster than after 1 hour (or 2
hours, respectively). The SVN part of our data shows
just this behavior. In contrast, the (much smaller) Git
part is mostly correct. However, a fraction of it exhibits
time travel in the opposite direction, as if the Bugzilla
and version archive servers had now changed roles, which
does not sound likely indeed. We were not able to find
out the origin of this inconsistency in our data so we
do what a practicing engineer would do (given the small
number of data points affected): live with it as it is. We
hence apply the same ¢, of 2.1 hours for TT(C) as well.

Both TT(B) and TT(C) are very weak, with a strength
below 1% and almost no results loss at all. TT(C) has
filtering precision 43% and overall precision 73%. TT(B)
has filtering precision 99% and overall precision 74%.

5.7 Filter LU: Reject Late Updates of Bugzilla Entries

5.7 Filter LU: Reject Late Updates of
Bugzilla Entries

We use the same plot as for TT(C) but now we focus on
the positive time range. We add 1.5 hours to minimize
the distortion from the timezone problem. The densi-
typlot is not useful if we start the plot at time zero, as
by far the most activity is early, not late, so we start
the density estimation only after 4 hours as shown in
Figure 6.

As Infopark is a one-timezone company, the plausi-
ble cutoff points are in the nights: The first after 10
hours (clearly overly aggressive; not visible in the den-
sity plot because of our removal of the first 4 hours),
then after about 32 hours, 55 hours, 80 hours, and 100
hours. An informal survey among Infopark developers
suggested “three days” as a good cutoff, so we pick 32
hours as the agressive choice and 80 hours as the default
and loose choice.

The difference is not large: filtering precision for 32
(80) hours is 56% (62%), results loss is 3% (2%) and
overall precision is 77% in both cases.

5.8 Filter UD: Reject All Merely Uni-
Directional Bugfix Links

This link uses a qualitative criterion and does not have
a tuning parameter.

Since the majority of bugfix links is unidirectional, this
filter’s strength is high (59%); its filtering precision is
low: only 29%. The results are rather extreme: Results
loss is an inacceptable 42%, but the resulting precision
a brilliant 99%.

5.9 Filter COMBI: Optimized Overall
Filtering

Given these properties of filter UD, it is obviously not
helpful to combine it with the others in a successive filter
chain, as even UD alone is too aggressive and has too
much results loss.

So we turn UD around and use it as an acceptance
criterion instead: Accept a candidate if it passes all of
the remaining filters FB, FC, SB, TT(B), TT(C), and
LU, but also accept it if it is bidirectional. We call this
filter COMBI.

In the loose parameter choice for each filter, the result-
ing COMBI filter has filter precision 70% and a strength
of 10%. It achieves an overall precision of 88% at 4.1%
results loss; a very good result. The default filter is even
better: its filter precision of 63% leads to 93% overall
precision at just 7.1% results loss. The aggressive ver-
sion is a little less efficient: with filter precision 48% it
achieves 94% precision, but at the cost of 14% results
loss (strength 27%).

Table 1 shows the effect of each filter (with default
parameter) invididually and the effect of chaining them

13

Table 1: Performance of each successive stage of the
default COMBI filter: filtering precision (fp), filter
strength (st), results loss (rl), and overall precision (op)
achieved by this filter alone (“solo”) or together with all
preceding filters (“aggregated”). All entries are in per-

cent. solo aggregated
fp st 11 op|fp st 1l op
TT(C) | 43 0.3 02 73|43 03 02 73
TT(B) | 99 0.9 0 7418 1.2 02 74
FC 9 3.7 02 77|93 49 04 78
LU 62 56 21 77|74 83 27 79
SB 81 69 13 81|67 15 4.0 90
FB 50 11 56 77|60 23 93 93
Ub* |29 59 42 99|63 19 7.1 93

¢“aggregated” uses UD in accepting mode, not rejecting mode

in order of increasing strength and then applying UD
acceptance as the last step. As we see, all filters make
a positive contribution to overall precision. The first
three, (TT(C), TT(B), and FC), raise overall precision
from 73% to 78%, yet produce only negligible results
loss. The next three, (LU, SB, FB) increase overall pre-
cision impressively from 78% to 93%, but also pile up
some results loss of 9.3%. The subsequent UD-driven
acceptance stage leaves precision essentially unchanged,
but cuts the results loss down to 7.1%.

For the loose parameter choices, the acceptance stage
reduces results loss from 5.3% to 4.1%; for the aggressive
choices it is from 19% to 14%. Overall, this is a smooth
and effective ensemble of filters.

As for final overall recall, we need to go back to the
calculation of initial recall in Section 5.2: Results loss
of 7.1% on 5005 candidate links means we lost 355 valid
links. The generators produced an estimated 3653 valid
links at least, or at least 72% initial recall, so now we
end up with at least 3298 valid links or at least 65% final
recall.

6 Dbflinks: How To
Method in Practice

Use the

For clarification, we will now summarize how one would
apply the overall bflinks method to one’s own repository
and how one can copy with the potentially large varia-
tion in repository content and properties that may occur
due to different application domain, technology used, de-
velopment conventions, and idiosyncrasies.

The procedure has to be applied by somebody who
knows and understands the repository content well, in
particular the text of the commit messages and bug-
tracker descriptions and comments.

1. Make the version archive and bugtracker data acces-

14

sible and run the generators BM and, if applicable,
CM.

Create the diagnostic plots for choosing the cutoff
parameter for each filter as described in Sections 5.3
to 5.7.

Based on each plot, combined with your under-
standing of repository content, select a loose, de-
fault, and aggressive parameter setting for each fil-
ter. Expect to find potentially much-different val-
ues compared to those in the present article. For
instance your bugtracking procedures may produce
much higher numbers of correct mentions of some
bug IDs (affects filter FB), your quality assurance
procedures may produce much later correct updates
of bugtracker entries (affects LU), your application
domain may involve other number ranges of non-ID
numbers mentioned in commits (affects SB), your
server clocks may have less or more time and time
zone issues (affects TT) and so on.

. Using the default parameter, compute filter strength

for each (filter. If those are similar to the
strengths reported in this article or conform to your
repository-specific expectations for some other rea-
son, you may be willing to trust the values and hence
the filters and start using the filter chain in this
form.

Otherwise switch to the loose or aggressive setting
for the problematic filters.

Sort the filters by increasing filter strength and com-
pute overall filter strength along the chain as shown
in the right half of Table 1. If those filter strengths
are similar to the strengths reported in this article
or conform to your repository-specific expectations
for some other reason, you may be willing to trust
the values and hence the filters and start using the
filter chain in this form.

Otherwise, draw a random sample of 100 candidate
links, apply the filter chain to them, and manually
validate the results. Compute precision. Compute
results loss. If necessary, adjust the parameter set-
ting of your strongest two or three filters until you
obtain a reasonable tradeoff between precision and
results loss.

If results loss appears inacceptably high, your repos-
itory is not well-suited for bugfix link identification.

If precision appears unacceptably low add syntax
matching and keyword matching to the BM gener-
ator so that it does not use any integer found but
instead requires forms such as #1234 (or whatever
is commonly used in your organization) and/or re-
quires keywords such as bug, fix, fixes etc.—this

7 THREATS TO VALIDITY

is not described above. Remove the SB filter in this
case.

10. If precision and results loss are now acceptable for
the sample, this provides you with a rough estimate
of true precision and true results loss with approx-
imately the following precision: According to the
binominal distribution, for observed frequencies of
false positives or false negatives of 5% (or 10% or
25%), with a probability of 90% the actual value will
be in the range 2%-9% (or 5%-15% or 18%-32%, re-
spectively).

Keep in mind that no amount of quality of the method
(or validation of that quality for other repositories) and
no amount of understanding of your particular repository
content on your side will make a successful bugfix link
identification happen if the repository content has too
few correct and/or too many misleading mentions of IDs.
See also the discussion of external validity below.

7 Threats to Validity

7.1 External Validity

It should be clear from the above discussion that the
results of bugfix link filtering strongly depend on the
development practices of the organization.

Our results serve to explain certain methods by which
good results can be obtained, but the actual results are
clearly specific to our particular case and might be very
different elsewhere.

In particular, the results could be better if the disci-
pline of mentioning Bugzilla IDs and commit IDs were
higher, or far worse if it were lower; they could also be
better if a fixed syntax for Bugzilla ID mentions were
used throughout; they could be worse if more Bugzilla
IDs or commit IDs were mentioned in other roles than
the bugfix link role.

One particularly important issue for the generalizabil-
ity of our method and findings is the frequency of back-
ward links from the bugtracker to a particular commit.
If this were a common practice in the large old version
repositories of popular projects such as Apache, Eclipse
etc., somebody would have invented the use of back-
ward links long ago. But how about more recent en-
vironments? In particular, the Git version management
system!®, suggests (via its “cherry-picking” functional-
ity) very fine-grained commits in order to describe the
semantics of each change discriminately.

To determine whether such technology leads to a de-
velopment culture with many backward links, we per-
formed a study on GitHub'® as follows.

5http://git-scm.com/, first released in 2005.
6http://github.com, founded 2009.

7.2 Internal Validity

e We searched for the super-generic keyword
“project”, which gave 151730 project hits (“reposi-
tory hits”) in apparently random order.

e We took the first 100 of these projects and selected
all those that had at least 1000 followers (“stars”),
which resulted in 16 projects ranging from 1041 to
7990 followers.

e 3 of these projects did not use the issue tracker at
all.

e For each of the others, if they used tags, we reviewed
the 30 youngest closed tracker entries tagged “bug”,
“confirmed”, or “defect”.

e For projects not using tags, we reviewed all “issue”
entries among the 30 youngest closed entries and
excluded only those that were very obviously not
about a bug (but rather about a feature request or
configuration issue).

e Of these tracker entries, between 0% and 100% (per
project) provided backward links to a commit; only
one project was below 20%. The average over the 13
projects was 44%, which happens to be quite close
to our own data (41%).

We conclude that the applicability of the powerful UD
filter will likely be good at least in many younger projects
using Git and GitHub.

7.2 Internal Validity

The manual validation of bugfix links is boring, quasi-
repetitive work and is likely to contain some amount of
error even for the repository expert. We estimate this
error to be on the order of 1% to 2% — too little to modify
our conclusions.

Since we have validated only a subset of all bugfix
links, the precision measurements also involve sampling
error. As described in Section 3.5, this error is biased and
distorts our results towards lower-than-actual precision
results, so that the actual performance of the method
was higher than we have reported. Due to the large
size of the validated sample, the difference will be small,
though.

As mentioned in Section 5.2, our recall estimate is very
unstable. A margin of error of about £20 percentage
points should be assumed here. However, we do not
consider a particular value of recall to be part of our
results.

8 Conclusions

In this article, we have described how to use a chain
of different filters on candidate bugfix links in order to
obtain high precision without loosing much recall. In

15

particular, we have shown how to tune those filters’ cut-
off parameters and how to make use of backward links
from defect database to version archive if such links are
available. We have evaluated the techniques on a rather
large commercial repository by carefully and individu-
ally checking over 2500 candidate bugfix links. There
are a number of conclusions:

1. The ambitious quality criteria set by Infopark for
avoiding incorrect conclusions (at least 50% recall,
at least 80% precision) were met for the bugfix links:
Our generator/filter network achieved roughly 65%
recall'” and at least 93% precision. Remember,
however, that a lot of headroom will be required
for the subsequent bug insertion localization step,
so this is not as big a success as it may seem.

2. We present 7 filters, 6 of which have a cutoff pa-
rameter that needs tuning. The simple diagnostic
plots and tactical reasoning we describe to be used
for parameter tuning have worked very well. In all 6
cases the results were good, in 5 of the 6 cases they
also had the properties that were expected; only the
FB filter parameter choice turned out to be more
aggressive than expected and needlessly aggressive,
too. These approaches and their general idea are
practical and appear to be helpful and sufficiently
safe. While we have demonstrated a practical ap-
proach to choosing the cutoff values with the help
of diagnostic plots, the particular parameter tuning
decisions made with this approach need to be id-
iosyncratic and must take specific properties of the
product and the development process into account.

3. After tuning, it took 5 of the 6 filters to be chained
to cross the precision threshold of 80%. We con-
clude that filtering must not be done too timidly and
many filtering ideas (possibly organization-specific
ones) should be combined.

4. Results loss can be used to guide the aggressiveness
in parameter choice by means of some manual clas-
sification of filtering results where needed.

5. Unconditional acceptance of bidirectional links
helps limiting results loss: Much less results loss
needs to be accepted in order to achieve the same
high precision if (and only if) a high density of back-
ward links from bugtracker entries to commits is
available.

6. Thus, we recommend regularly mentioning bugfix
commit IDs in bugtracker comments as a develop-
ment practice.

17But please observe the discussion in Sections 3.3, 5.2, 5.9, and
7.2.

16

Acknowledgments

We thank Thomas Witt and the development team at
Infopark for helping with access to and understanding of
the repository data. We thank Franz Zieris for catching
two major errors in the manuscript.

References

Bachmann A, Bernstein A (2009a) Data retrieval, pro-
cessing and linking for software process data analysis.
Tech. Rep. IFI-2009.0003b, University of Zurich, De-
partment of Informatics (IFI), Zurich, Switzerland

Bachmann A, Bernstein A (2009b) Software process data
quality and characteristics: A historical view on open
and closed source projects. In: Proceedings of the
Joint International and Annual ERCIM Workshops on
Principles of Software Evolution (IWPSE) and Soft-
ware Evolution (Evol) Workshops, ACM, New York,
NY, USA, IWPSE-Evol ’09, pp S. 119-128, DOI http:
//doi.acm.org/10.1145/1595808.1595830, URL http:
//doi.acm.org/10.1145/1595808.1595830

Bachmann A, Bird C, Rahman F, Devanbu P, Bern-
stein A (2010) The missing links: bugs and bug-
fix commits. In: Proceedings of the eighteenth ACM
SIGSOFT international symposium on Foundations
of software engineering, ACM, New York, NY, USA,
FSE '10, pp 97-106, DOI http://doi.acm.org/10.
1145/1882291.1882308, URL http://doi.acm.org/
10.1145/1882291.1882308

Bird C, Bachmann A, Aune E, Duffy J, Bernstein
A, Filkov V, Devanbu P (2009) Fair and bal-
anced?: bias in bug-fix datasets. In: Proceedings
of the the Tth joint meeting of the European Soft-
ware Engineering Conference (ESEC) and the ACM
SIGSOFT symposium on the Foundations of Soft-
ware Engineering (FSE), ACM, New York, NY,
USA, ESEC/FSE ‘09, pp 121-130, DOI http://
doi.acm.org/10.1145/1595696.1595716, URL http://
doi.acm.org/10.1145/1595696.1595716

CMMI Product Team (2010) CMMI for development,
version 1.3. Tech. Rep. CMU/SEI-2010-TR-033, Soft-
ware Engineering Institute, Carnegie Mellon Univer-
sity, Pittsburgh, PA

D’Ambros M, Lanza M, Robbes R (2011) Evaluating de-
fect prediction approaches: a benchmark and an ex-
tensive comparison. Empirical Software Engineering
(online first):.

Fairley R, Willshire MJ (2005) Iterative rework: The
good, the bad, and the ugly. IEEE Computer pp 34—
41

REFERENCES

Fischer M, Pinzger M, Gall H (2003) Populating a re-
lease history database from version control and bug
tracking systems. In: Proc. of the Int’l Conf. on Soft-
ware Maintenance, IEEE Computer Society, Washing-
ton, DC, USA, DOI http://doi.ieeecomputersociety.
org/10.1109/ICSM.2003.1235403

Issabayeva A, Nugroho A, Visser J (2012) Issue han-
dling performance in proprietary software projects.
In: Proc. 9th Working Conference on Mining Software
Repositories, IEEE CS Press, pp 209-212

Kim S, Zimmermann T, Whitehead, Jr E, Zeller A
(2007) Predicting faults from cached history. In: Pro-
ceedings of the 29th International Conference on Soft-
ware Engineering, IEEE Computer Society, Washing-
ton, DC, USA, ICSE ’07, pp S. 489-498, DOI 10.1109/
ICSE.2007.66, URL http://dx.doi.org/10.1109/
ICSE.2007.66

Luijten B, Visser J (2010) Faster defect resolution with
higher technical quality of software. In: Proc. 4th Int’l
Workshop on Software Quality and Maintainability

Mockus A, Votta LG (2000) Identifying reasons for soft-
ware changes using historic databases. In: Proc. of
the Int’l Conf. on Software Maintenance (ICSM ’00),
IEEE Computer Society, Los Alamitos, CA, USA, pp
120-130, DOI http://doi.ieeecomputersociety.org/10.
1109/ICSM.2000.883028

Nagappan N, Murphy B, Basili VR (2008) The influence
of organizational structure on software quality: An
empirical case study. In: Proc. 30th Int’l. Conf. on
Software Engineering

Nguyen AT, Nguyen TT, Nguyen HA, Nguyen TN
(2012) Multi-layered approach for recovering links be-
tween bug reports and fixes. In: Proc. 20th Int’l. Sym-

posium on the Foundations of Software Engineering
(ACM SIGSOFT FSE), ACM press, pp 63:1-63:11

Robles G, Koch S, Gonzdlez-Barahona JM (2004) Re-
mote analysis and measurement of libre software sys-
tems by means of the CVSAnalY tool. In: Proceedings
of the 2nd ICSE Workshop on Remote Analysis and
Measurement of Software Systems, IEEE Computer
Society, Washington, DC, USA, RAMSS, pp 51-55,
DOI 10.1.1.58.6959

Sadowski C, Lewis C, Lin Z, Zhu X, Whitehead, Jr E
(2011) An empirical analysis of the fixcache algorithm.
In: Proceeding of the 8th Working Conference on Min-
ing Software Repositories, ACM, New York, NY, USA,
MSR ’11, pp 219-222

Sliwerski J, Zimmermann T, Zeller A (2005a) Hatari:
Raising risk awareness. In: Proceedings of the
10th European Software Engineering Conference

REFERENCES

held jointly with 13th ACM SIGSOFT Interna-
tional Symposium on Foundations of Software En-
gineering, ACM, New York, NY, USA, ESEC/FSE-
13, pp S. 107-110, DOI http://doi.acm.org/10.
1145/1095430.1081725, URL http://doi.acm.org/
10.1145/1095430.1081725

Sliwerski J, Zimmermann T, Zeller A (2005b) When
do changes induce fixes? ACM SIGSOFT Software
Engineering Notes 30(4), DOI http://doi.acm.org/10.
1145/1082983.1083147

Sliwerski J, Zimmermann T, Zeller A (2005¢) When do
changes induce fixes? In: Proceedings of the 2005
International Workshop on Mining Software Repos-
itories, ACM, New York, NY, USA, MSR ’05, pp
S. 1-5, DOT 10.1145/1083142.1083147, URL http:
//doi.acm.org/10.1145/1082983.1083147

Voorhees EM, Harman D (2000) Overview of the
eighth Text REtrieval Conference (TREC-8). URL
http://trec.nist.gov/pubs/trec8/papers/
overview_8.ps

Wu R, Zhang H, Kim S, Cheung SC (2011) Relink: re-
covering links between bugs and changes. In: Proc.
19th ACM SIGSOFT Symposium and 13th European

Conf. on Foundations of Software Engineering, ACM,
ESEC/FSE 11, pp 15-25

17

