
On the Complexity of Partial Order PropertiesStefan Felsner� Dorothea Wagner yAbstractThe recognition complexity of ordered set properties is considered, i.e. how manyquestions have to be asked to decide if an unknown ordered set has a prescribedproperty. We prove a lower bound of 
(n2) for properties that are characterizedby forbidden substructures of �xed size. For the properties being connected, andhaving exactly k comparable pairs we show that the recognition complexity is �n2�;the complexity of interval orders is exactly �n2� � 1. Non-trivial upper bounds aregiven for being a lattice, containing a chain of length k � 3 and having width k.1 Introduction and OverviewA well studied recognition problem on sets arising in the context of representing sets incomputer storage is de�ned by the following game. Given a �nite set S and a propertyP of subsets of S, i.e. P � 2S (the powerset of S), a player A wants to know if anunknown set X � S is in P by asking questions about elements of S. For his questionsA chooses some x 2 S and asks \Is x 2 X?", player B answers \yes" or \no". The aimof A is to minimize the number of questions, while B tries to force A to ask as manyquestions as possible. In any case, the game ends up with sets X and Z such that eitherall Y containing X and not containing an element of Z, i.e X � Y � S nZ, are in P orall such Y are not in P .The number of queries necessary to �nish the game if both players play optimally iscalled the recognition complexity of P . A property is called elusive, if B can force A toask all possible jSj questions. If P is considered as a Boolean function, the complexityof P is a lower bound for the time any algorithm recognizing P must take in the worstcase on any model of sequential machine [10].A famous and well studied special case of this game is, when S is regarded as theset of possible edges of a graph on n vertices, i.e. P is a property of graphs [2], [6], [7],[8], [9]. The relation between this concept of recognition complexity of graph propertiesand the computer representation of graphs is discussed in [11]. See also [1] for moreinformation and references on recognition complexity.�Institut f�ur Informatik, Fachbereich Mathematik, Freie Universit�at Berlin, Takustra�e 9, 14195Berlin, GermanyyFachbereich Mathematik, Technische Universit�at Berlin, Stra�e des 17. Juni 136, 10623 Berlin,Germany 1



In [5] Faigle and Tur�an suggest to play the game on properties of partial orders.Here player A asks for the comparability status of two elements a and b, and B answers\a < b"; \a > b" or \a and b are incomparable."Considering a property P of partial orders with n elements, P is elusive if B can forceA to ask all possible �n2� questions. Obviously, the game for properties of partial ordersdoes not �t into the concept of set properties discussed before, since there are threepossible answers instead of two. Moreover, the transitivity of partial orders may leadto situations, where player A knows the comparability status of two elements withoutasking it { independently from the considered property. While in the case of graphproperties it seems that nearly all properties are elusive or at least of complexity 
(n2),there exist many \easy" properties of partial orders. E.g. the recognition problem ofbeing a linear order is just the sorting problem and thus has complexity O(n logn).In this paper we study the recognition complexity of several properties of partialorders. First we describe situations that induce the comparability status of an unaskedpair of elements independently from the considered property. For properties that arecharacterized by forbidden substructures of �xed size we prove a lower bound of 
(n2)for the recognition complexity. In section 3 we prove elusiveness for connectedness andhaving exactly k comparable pairs, for �xed k. Non-trivial upper bounds are given insection 4 for being a lattice, containing a chain of length k, for k � 3 and having widthk, for k �xed, thus proving that these properties are not elusive. For the class of intervalorders we prove that �n2�� 1 is the exact value of its recognition complexity.2 Some general observationsWe �rst introduce some basic notations. A partial order P = (V;<) consists of a �niteground set V and the order relation <, incomparability is denoted by k. An element bcovers a (denoted a � b) if a < b and there is no c 2 V with a < c < b. Throughoutthis paper we illustrate partial orders by their Hasse diagram. The vertices of the Hassediagram are the elements of V and b covers a in P i� a and b are connected by an edgegoing from a up to b. A partial order property P is a set of partial orders over the sameground set closed under isomorphism.Consider the game introduced in section 1 for a partial order property P over a n-element ground set V . The state of the game after q � �n2� questions can be interpretedas a triple ((C;<); I;N), where (C; I;N) is a partition of the set of all two-elementsubsets of V . The pairs in C are those which have been given comparable in one of the qsteps and < is the corresponding order relation. I is the set of pairs given incomparableand N is the set of pairs not yet asked for.We call a triple ((C;<); I; N) legal if there exists a partial order P = (V;<P) com-patible with the triple, i.e. satisfying1. If fa; bg 2 C and a < b then a <P b.2. If fa; bg 2 I then a k b in P . 2



An algorithm for player A is a mapping ' assigning to each legal triple ((C;<); I;N) apair fa; bg 2 N , i.e. ' prescribes the next question \a : b" at state (((C;<); I; N).A strategy for player B is a mapping  which assigns to a given legal triple ((C;<); I; N) and fa; bg 2 N a new legal triple which is one of the following two((C;<); I [ fa; bg; N n fa; bg) ; ((C [ fa; bg; <); I; N n fa; bg):A game is �nished at state ((C;<); I;N) if either all partial orders P compatible withthe triple are in P , or for all of them P =2 P holds.The complexity of a property P for a �xed algorithm ' and a �xed strategy  is theminimum number of questions needed to �nish a game if player A uses ' and player Buses  , i.e.C(P ;';  ) = minf q j game �nishes at state ((C;<); I;N; ) with jC [ I j = qg:The complexity of a property P is the minimum number of questions needed to �nish agame if both A and B play optimally, i.e.C(P) = min' max C(P ;';  ):For a legal triple ((C;<); I;N) with jC [ I j = q, the number of pairs of elements whosecomparability status is known may be more than q. We now give situations, where thecomparability status of a pair fa; bg 2 N is induced by the comparability status of someother pairs independent from the partial order property under consideration.Situation 1 If there exist elements a1; a2; a3 with a1 < a2 and a2 < a3 then by transi-tivity a1 < a3 holds.Situation 2 If there exist elements a1; a2 and b1; b2 with a1 < a2, b1 < b2, a1jjb2 anda2jjb1 then both of a1jjb1 and a2jjb2 hold.Proof: With each of the 4 possible comparabilities a2 < b2, b2 < a2, a1 < b1 andb1 < a1 we would introduce as transitive edge either a1 < b2 or b1 < a2 contradictingthe incomparability of this pair. (See �gure 1a).(We always illustrate partial orders by their Hasse diagram with solid lines, incompara-bilities are denoted by dashed edges, and dotted edges denote an unknown comparabilitystatus)Situation 3 Consider a state ((C;<); I;N) of a game where there exists a 5-chaina1 < a2 < a3 < a4 < a5 and an element b =2 fa1; :::; a5g with fb; aig 2 N . Then playerA can deduce the comparability status of all �ve pairs fb; aig, 1 � i � 5 by asking onlyfour questions.Proof: Player A asks for the comparability status of the pairs b : a2 and b : a4. Ifone of these pairs is comparable we gain a transitive edge. In case both pairs are givenincomparable A concludes bjja3. (See �gure 1b).3
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......................Figure 1: Three standard situations.Situation 4 Consider a state ((C;<); I;N) of a game where there exist two 3-chainsa1 < a2 < a3 and b1 < b2 < b3 and all the pairs fai; bjg are in N . Then player A candeduce the comparability status of all six pairs ai : bj by asking only �ve questions.Proof: Player A asks for the comparability status of a1 : b2 and b1 : a2. If both a1jjb2and b1jja2, then situation 2 applies, i.e. a1jjb1 and a2jjb2. Otherwise, i.e. if at least oneof these pairs is given comparable, A gains a transitive edge. (See �gure 1c).A partial order P0 = (V0; <0) is a suborder of P = (V;<) if V0 � V and a <0 b i�a < b for all a; b 2 V0. (In this case, we do not distinguish between <0 and <.)Theorem 1 Let P be a partial order property over a n-element set V such that1. P contains the n-element antichain;2. there exists a partial order P0 = (V0; <0) of �xed size k, i.e. jV0j = k < n, suchthat each partial order P that contains P0 as a suborder is not in P.Then P has complexity 
(n2).Proof: Player B can make use of the following `greedy strategy'. As long as there is asubset X � V with jX j = k and �X2 � � N (where �X2 � = ffx; ygjx; y 2 Xg) the answerto the question a : b is ajjb. The n-antichain and the order P0 on X together with n� kindependent elements are compatible orders, one in P the other not in P .Therefore player A has to ask at least one question from each k-element subsetX � V . There exist �nk� di�erent subsets of size k. On the other hand, a given pair of4



elements is contained in �n�2k�2� of these sets. So, the number of questions A has to askis at least (nk)(n�2k�2) = n2�1k2�1 , which is of 
(n2).Remark:1) Obviously, the complexity of a property P is equal to the complexity of its com-plement, i.e. the set of all partial orders that are not in P (which is a partial orderproperty as well).2) Theorem 1 applies to a lot of partial order properties, e. g. for being an intervalorder, being a lattice, having dimension at most 2 or containing a chain of lengthat least 3.3 Elusive PropertiesLet us call a partial order connected if its Hasse diagram considered as an undirectedgraph is connected.Theorem 2 The property P of all connected partial orders over set V is elusive.Proof: We give a strategy  for player B such that C(P ;';  ) = �n2� for all algorithms' of player A.Let the �rst question be a : b, then B answers a < b. For further questions a : b heanswers ajjb, except in case fa; bg is the last possible edge between one of the elements,say a, that is not comparable to another element, and an element b comparable to someother element. Then the comparability is given according to the comparability statusof b, such that b remains a minimal element or a maximal element. More precisely, fora legal ((C;<); I;N) let M = [fx;yg2Cfx; yg then for fa; bg 2 N the answer of B is:a < b if a =2M , b 2M and for all x 2M n fbg we have fx; ag 2 I ,and b > c for some c 2M ;b < a if a =2M , b 2M and for all x 2M n fbg we have fx; ag 2 I ,and b < c for some c 2M ;ajjb else.The strategy  obviously preserves the invariants:(1) The partial order induced by (C;<) over M is connected, and �M2 � � C [ I .5



(2) All x 2M are either minimal or maximal with respect to (C;<).(3) For each x 2 V nM there is a y 2M such that fx; yg 2 N .Applying  , the game ends with a legal triple ((C;<); I;N). If jC [ I j < �n2�,then the partial orders compatible with ((C;<); I;N) would all be connected or all bedisconnected. But invariants 1 and 2 contradict the assumption that all compatiblepartial orders are connected, while invariant 3 contradicts the case that they all are notconnected.Theorem 3 The property P of all partial orders containing exactly k comparable pairsover V with jV j = n is elusive if k = n1 � n2 with n1 + n2 � n.Proof: A strategy  for player B such that C(P ;';  ) = �n2� for all algorithms ' is toconstruct a \complete height 1 order" with exactly k edges. Let (X; Y; Z) be a partitionof V with jX j = n1 and jY j = n2, the order P0 on V is de�ned by x < y i� x 2 X andy 2 Y . The number of comparabilities of P0 is k.Given a question a : b the answer of player B is the comparability status of the pairfa; bg in P0. The length of the game then is �n2� since even the last unasked pair maychange the number of comparabilities of the �nal order P . Let fa; bg be the last unaskedpair. If a and b are comparable in P0 then B may give ajjb and the game ends with anorder with k� 1 comparabilities. If ajjb in P0 then B may give a < b if a 2 X and b < aotherwise, the resulting order then has k + 1 comparabilities.Remark:1) The proof shows that the recognition complexity of the order P0 is �n2� while in [5]height 1 orders are presented which have recognition complexity of O(n logn).2) Let f(k) be the complexity of having exactly k comparable pairs. By the theoremf(k) = �n2� for many values k � n24 , on the other hand f(k) 2 �(n logn) fork � n22 � cn for c constant. It would be interesting to know the value of f(k) forsome k in between.4 Upper BoundsIn this section we give upper bounds for the complexity of several partial order prop-erties. Consider a partial order P = (V;<), two elements a; b 2 V have the minimumx 2 V , denoted x = minfa; bg if x � a and x � b, and z � a and z � b implies z � x.6



t ttt \\\\\\\\\���������ab cdFigure 2: Forbidden suborder for lattices.The maximum is de�ned analogously. P = (V;<) is a lattice i�minfa; bg andmaxfa; bgexist for all a; b 2 V .Theorem 4 Let P be the set of all lattices over V , jV j > 3, then C(P) < �n2�.Proof: In the following we use the fact that L = (V;<) is a lattice i� it does not containfour elements a; b; c; d with a � b; a � d; c � b; c � d; ajjc and bjjd (see �gure 2), and itcontains a unique minimum and a unique maximum, i.e. an element x 2 V such thatx � y respectively y � x for all y 2 V . (Denote the minimum resp. maximum of L bymin(L) resp. max(L).)An algorithm ' for player A with C(P ;';  )< �n2� for all strategies  is �rst to askall �n�12 � questions over V n fxg for a �xed x 2 V . The state of the game after these�n�12 � questions is a legal triple ((C;<); I;N) and N = f fx; yg j y 2 V g.Case 1 The partial order induced by ((C;<); I) is not a lattice. The `defect' of ((C;<); I)relative to lattices has to be so small that adding x in the right way leads to a lattice.The possible situations then are1.1 The unique minimum or maximum is missing. Then, w.l.o.g. let ((C;<); I) inducea partial order containing no minimum. It must contain a maximum y and alllattices compatible with ((C;<); I;N) contain x as its minimum. So A asks a : xfor an arbitrary a 2 V n fx; yg. Player B has to answer x < a, else there is nocompatible partial order that is a lattice, but with x < a and x < y the transitiveedge a < y is given.1.2 The partial order induced by ((C;<); I) contains a forbidden substructure on ele-ments a; b; c; d. In this case A asks b : x and d : x. Then B either gives a transitiveedge between x and the minimum or the maximum, or B answers bjjx and djjx,which implies that there exists no compatible partial order which is a lattice.Case 2 The partial order induced by ((C;<); I) is a lattice.2.1 If the lattice contains a 5-chain, then situation 3 from section 2 applies.7



2.2 If the lattice has height 3, i.e. there is a 4 chain min < a1 < b1 < max, then thenonextremal elements are partitioned into a1; :::; ak, those covering the minimum,and the remaining elements b1; :::; bl. Note that all the bi are covered by themaximum. A �rst asks x : ai for 2 � i � k. If x is comparable with at least one ofthe ai then this comparability induces a transitive edge. Hence we assume that Balways answers xjjai. Now, A asks x : bj for 1 � j � l. Again, the comparabilityof x with one of the bj would induce a transitive edge. Assume xjjbj for 1 � j � l.The next two questions are x :min and x :max. To guarantee that there exists acompatible partial order that is a lattice, B has to answer x < max and min < x.But now the comparability status of x and a1 may be chosen arbitrarily, since allpartial orders compatible with that state of the game do not contain the forbiddensubstructure, i.e. are lattices.2.3 If the lattice has height 2, A �rst asks x :min and x :max. If the answers of B aremin 6< x or x 6< max, B either gives a transitive edge or there exist no compatiblepartial orders which are lattices.Otherwise, if min < x < max, then the comparability status of x and all otherelements of V may be chosen arbitrarily, since there exists no compatible partialorder that contains a forbidden substructure, i.e. all compatible partial orders arelattices.Theorem 5 The property P of all partial orders over set V with jV j = n � 4, thatcontain a k-chain, k � 4 has complexity C(P) < �n2�.Proof: A asks all possible questions over V n fxg for �xed x. To guarantee thatfor the state of the game after these �n�12 � questions there exists a compatible partialorder containing a chain of length k, B has to construct a chain of length k � 1, saya1 < a2 < ::: < ak�1. Now A asks x : a2. If B answers xjja2, then the comparabilitystatus of x : a1 and x : ai, 2 < i � k � 1, is not essential for P . Otherwise, if B answersx < a2 or a2 < x there is an induced transitive edge.This argument does not apply to the case k = 3.Theorem 6 The property P of all partial orders over set V , jV j = n � 5, that containa 3-chain has complexity C(P) < �n2�.Proof: We use the following two facts.Fact 1 If for a strategy  there exists a state ((C;<); I;N) with fa; bg; fc; dg 2 C,a < b; c < d and fa; dg 2 N , fb; dg; fa; cg 2 N [ I then there exists an algorithm ' suchthat C(P ;';  )< �n2�. 8



uu u'& $%#"  !u uuu u ��������ll ll ll ll ll. . . . . . . . . . . . . . . . . . . . . . .aa aa aa aa!! !! !! !! !! !! !!.................. c BbAaab dc xFigure 3: Illustrations for the facts.A may obtain fa; cg 2 I and fd; bg 2 I , otherwise there would be a 3-chain. Now Aasks all remaining questions fa; xg, x 6= d and all questions fd; xg, x 6= a. If fa; xg 2 Cthen a < x, otherwise we would have a 3-chain, symmetrically fd; xg 2 C implies x < d.From this we conclude that for all x 6= a; d either fa; xg 2 I or fd; xg 2 I , but now thecomparability status of a : d is not essential for P , since this pair can not contribute toa 3-chain in a compatible order. (See �gure 3).Fact 2 If for a strategy  there exists a state ((C;<); I;N) such thati) fc; xg 2 C [ I for a �xed c 2 V and all x 2 V n fcg,ii) there are a; b 2 V with fa; cg 2 I; fb; cg 2 C,iii) for all a; b 2 V with fa; cg 2 I; fb; cg 2 C, we have fa; bg 2 Nthen there exists an algorithm ' such that C(P ;';  )< �n2�.W.l.o.g. c < b. Let A = fai 2 V n fcg : fc; aig 2 Ig and B = fbj 2 V n fcg : fc; bjg 2Cg, then c < bj for all bj 2 B since otherwise there is a 3-chain. We next ask forall the remaining pairs fai; ajg and fbi; bjg. The pairs fai; ajg are given incomparable,otherwise fact 1 applies. Moreover, all pairs fbi; bjg are given incomparable to avoid a3-chain. But then there exists no compatible partial order in P , i.e. the comparabilitystatus of all ai : bj for ai 2 A and bi 2 B is not essential for property P since bj cannotcause a 3-chain. (See �gure 3).An algorithm ' with C(P ;';  ) < �n2� for all strategies  is the following. LetV = fx1; : : : ; xng. First, A asks x1 : x2. If the answer is x1jjx2 then A asks x1 : xi for2 < i � n � 1. B answers x1jjxi, otherwise fact 2 applies. But then the comparabilitystatus of x1 : xn is not essential, since neither x1 < xn nor xn < x1 can contribute to a3-chain.So, assume B answers w.l.o.g. x1 < x2. Now, A asks x1 : xi, for 2 < i � n � 2.Because of fact 2, respectively to avoid a chain of length three, B always answers x1 < xi.9



With the following questions, A can force a situation where the comparability statusof xn�1 : xn is not essential for P .First question A asks x2 : xn.To avoid a 3-chain, respectively because of fact 1 with a = xn, b = x2, c = x1,d = x3, B answers x2 k xn.Second set of questions A asks all xi : xn for 2 < i � n� 2.To avoid a chain of length 3, B will in no case answer xi < xn. Assume B answersxi k xn for all i, 2 < i � n� 2. Then A asks xn�1 : xn, and if B answers xn�1 k xnx1 : xn is not essential for P . But a comparibility between xn and xn�1 inducesfact 1. Thus for at least one xi, 2 < i � n � 2 B will answer xn < xi. W.l.o.g. letxn < x3.Third set of questions A asks x1 : xn�1.The answer xn�1 < x1 induces a chain of length three.If x1 k xn�1, then A asks all questions xi : xn�1 for 2 � i < n, and either gets acomparability which induces a chain of length three or fact 1, or xi k xn�1 for alli, and thus xn�1 : xn is not essential for P .So let B answer x1 < xn�1.Fourth set of questions A asks xi : xn, for all remaining xi, 1 � i < n� 1, strating withx1 : xn.To avoid 3-chains B has to answer x1jjxn. For all other xi the answers are xijjxnor xn < xi. At answers xn < xi let the question xi : xn�1 follow, this has to beanswered with xijjxn�1 to avoid a 3-chain.But now, the comparability status of xn�1 : xn is not essential for P , since each xi,i 6= n; n� 1 is incomparable to one of xn�1 and xn.Theorem 6 is a kind of indicator that elusive partial order properties must be oflow height. We now consider the width of partial orders, i.e. the maximal size of anantichain.Theorem 7 Let P be the property of all partial orders of width k over V , for a �xed k,then C(P) � 2kn logn.Proof: The algorithm ' with C(P ;';  ) � 2kn logn is based on sorting. Let theground set be indexed, i.e V = fx1; : : : ; xng, then player A determines one after anotherthe order on fx1; : : : ; xig for 1 � i � n. Consider Pi = (fx1; : : : ; xig; <), if the width ofPi is more than k, then all compatible orders have this property and the game is over.10



Therefore we assume the width of Pi to be at most k and, by the theorem of Dilworth[3] Pi can be partitioned into k chains H1i ; : : : ; Hki .Let Hji be a chain of the chain partition of Pi, say Hji = c1 < c2 < : : : < cl. Adetermines the comparability status of fxi+1; cjg for 1 � j � l using binary search.First A asks for xi+1 : cd l2 e. If xi+1 < cd l2 e (resp. xi+1 > cd l2 e) then A recursivelydetermines the comparability status of xi+1 with the elements of the remaining `half-chain' fcj j 1 � j < d l2eg (resp. d l2e < j � l).If xi+1 k cd l2 e, then l1 < d l2e < l2 holds, where l1 := maxfj j j = 0 or cj < xi+1g andl2 := minfj j j = l + 1 or xi+1 < cjg. Now, A recursively applies bitonic sort to bothhalf-chains to determine l1 and l2. The comparability status of xi+1 with all elements ofHji can thus be determined with 2 log l questions. The comparability status of all pairsfrom fx1; : : : ; xig is known after at most 2k logn queries. Adding the n elements one byone we obtain the overall complexity of 2kn logn.Remark: Algorithm ' not only decides if an unknown partial order has width at mostk, but also if it is isomorphic to a �xed partial order P0 of width k. Thus theorem 7improves the upper bound given in [5] (which is 2kn logn+ 3kn) for the P0-recognitionproblem.A partial order P = (V;<) is an interval order i� there exists a collection (Ix)x2Vof intervals on the real line, such that x < y i� Ix lies entirely to the left of Iy . Thecharacterization theorem of Fishburn says: P is an interval order i� P does not con-tain a suborder 2+2, where 2+2= (fa; b; c; dg;<) with a < b; c < d and no furthercomparabilities [4].Theorem 8 The recognition complexity of the class P of interval orders is C(P) =�n2�� 1.Proof: We �rst prove C(P) � �n2� � 1. This is done by describing an algorithm ',such that C(P ;';  ) � �n2� � 1 for all strategies  . Let V := fx1; : : : ; xng, A takes theelements by increasing index and asks for their comparability status to all elements withhigher index, until B gives the �rst comparability.In case xi k xj for i � n � 3 and all j, every compatible partial order is an intervalorder and A gains 3 questions. So, let fxk; xk+lg be the �rst comparable pair, andxk < xk+l (the other case is dual). Now, algorithm ' uses the fact that an intervalorder can not contain a 2+2 as suborder, and situation 2 of section 2, i.e. that inany four elements fa; b; c; dg � V , with a < b and c < d, A only has to know thecomparability status of the diagonals fa; dg and fc; bg to decide if the four elementsinduce the forbidden 2+2.A then asks all pairs of elements from V 0 = fxk; xk+1; : : : ; xk+l�1; xk+l+1; : : : ; xng.Let Q be the resulting order. If Q is an antichain then all compatible partial orders are11



in P . We thus assume that at least one pair is comparable. Q has to be an intervalorder, otherwise all compatible orders contain the 2+2 of Q and are not in P . Letz 2 V 0 be an element with maximal set of predecessors in Q (interval orders alwayscontain a z such that a < b implies a < z). If z = xk then there is a xj with xj < xkand we gain the transitive edge xj < xk+l, hence z 6= xk. Now, ask the edges fxk+l; x0gwith x0 2 V 0 n fz; xkg. We claim: if still there is no 2+2 then the edge fxk+l; zg cannot cause one.Suppose there exists a set fxk+l; z; xi; xjg, k � i 6= j � n that can still form a 2+2.From the maximality of z's set of predecessors we deduce that xj < z. Then we canchoose xi such that the 2+2 is of the form xi < xk+l and xj < z. But then the diagonalshave already been asked and we are able to detect the 2+2 without asking fxk+l; zg.To prove C(P) � �n2� � 1 consider the following `greedy-strategy'  . For all statesof the game and all questions x : y B answers x k y unless there is no compatible partialorder containing a 2+2.Let ((C;<); I;N) be the �rst state where C 6= ;, let C = fa; bg. Consider the graphGN induced by N , i.e. with vertex set V (N) := fxi: there is a fxi; xjg 2 Ng andedge set N . It is easy to see that GN is either a star or a triangle. That is, eitherN � ffy; xig : xi 2 V g for some y 2 V , or N = ffxi; xjg; fxj; xlg; fxl; xigg for somexi; xj; xl 2 V .If GN is a star then B can force A to ask all the remaining questions from N byusing  .If GN is a triangle and fa; bg\ fxi; xj ; xlg = ;, then  forces A to ask all remainingquestions from N as well.The only case where the game �nishes after �n2� � 1 questions is if GN is a triangle,fa; bg \ fxi; xj ; xlg = fxig and A �rst asks xj : xl. In this case A can make use of`situation 2' and gain one question.References[1] M. Aigner, Combinatorial Search, (Wiley-Teubner 1988).[2] B. Bollobas, Extremal Graph Theory, (Academic Press 1978).[3] R. P. Dilworth, A Decomposition Theorem for Partially Ordered Sets, Ann. ofMath. Vol. 51, No. 1, (1950) 161-166.[4] P. C. Fishburn, Interval Orders and Interval Graphs, (Wiley-Interscience Seriesin diskrete Mathematics, John Wiley & Sons 1985).[5] U. Faigle and Gy. Tur�an, Sorting and recognition problems for ordered sets,SIAM J. Comp. 17 (1988) 100-113. 12
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