
Prof. Dr.-Ing. Jochen Schiller
Computer Systems & Telematics

3.1

Prof. Dr.-Ing. Jochen Schiller
Computer Systems & Telematics
Freie Universität Berlin, Germany

TI III: Operating Systems & Computer Networks 
Processes

TI 3: Operating Systems and Computer Networks



3.2

Content

1. Introduction and Motivation

2. Subsystems, Interrupts and System Calls

3. Processes

4. Memory

5. Scheduling

6. I/O and File System

7. Booting, Services, and Security

TI 3: Operating Systems and Computer Networks



3.3

Definitions of a Process
Program in execution

Instance of a program running on a computer
-There may be multiple instances of the same program, each as a separate process

Unit characterized by
-Execution of a sequence of instructions
-Current state
-Associated block of memory

TI 3: Operating Systems and Computer Networks



3.4

Related Concepts to “Process”
Thread: One (of several) runtime entities that share the same address space
-Easy cooperation, requires explicit synchronization
-A process may consist of several threads

Application: User-visible entity, one or more processes

TI 3: Operating Systems and Computer Networks



3.5

Program vs. Process

Multiple parts
-Program code ➙ text section
-Current activity ➙ program counter, processor 
registers

-Stack ➙ temporary data
-Data section ➙ global variables
-Heap ➙ dynamic memory 

Program is passive entity, process is active 
-Program becomes process when executable file 
loaded into memory

One program can be several processes

TI 3: Operating Systems and Computer Networks



3.6

Tasks of an OS concerning processes
Interleaved execution (by scheduling) of multiple processes
-Maximization of processor utilization
-Reduction of response time

Allocation of resources for processes
-Consideration of priorities
-Avoidance  of deadlocks

Support for Inter-Process Communication (IPC)

On-demand user-level process creation
-Structuring of applications

TI 3: Operating Systems and Computer Networks



3.7

Process execution (Trace)

TI 3: Operating Systems and Computer Networks



3.8

Process execution (Trace)

TI 3: Operating Systems and Computer Networks



3.9

Questions & Tasks
-Check the number and type of processes and threads running on your computer – surprised?
-What are many of the “invisible” processes used for? Who started them?
-Why can several instances of the same program running as individual processes make sense?

-What could be disadvantages?
-Who is responsible for the “interleaved execution” of multiple processes?

-But how can this be done if we assume a single processor running a single process that does not want to 
leave this processor?

-Name some criteria for schedulers!

TI III - Operating Systems and Computer Networks



3.10

Simple Process Model
Process is in one of two states:
-running
-not running

How to implement?

TI 3: Operating Systems and Computer Networks



3.11

Simple Process Model
Running processes managed in queue:

What information required?

TI 3: Operating Systems and Computer Networks



3.12

Process Control Block (PCB)
Definition: OS data structure which contains the information needed to manage a process (one PCB per process)

TI 3: Operating Systems and Computer Networks

Process identifiers • IDs of process, parent process, and user

CPU state

• User-visible registers
• Control and status registers:

• Stack pointer (SP)
• Program counter (PC)
• Processor status word (PSW)

Control information

• Scheduling information:
• Process state, priority, awaited event

• Accounting information:
• Amount of memory used, CPU time elapsed

• Memory management:
• Location and access state of all user data

• I/O management:
• Devices currently opened (files, sockets)



3.13

Process Control Block (PCB)

TI 3: Operating Systems and Computer Networks



3.14

Reasons for Process Creation
Interactive logon
-User logs onto a terminal
-May create several processes as part of logon procedure (e.g. GUI)

Created by the OS to provide a service
-Provide a service to user program in the background (e.g. printer spooling)
-Either at boot time or dynamically in response to requests (e.g. HTTP)

Spawned at application start-up
-Separation of a program into separate processes for algorithmic purposes

Always spawned by existing process
-Operating system creates first process at boot time
-Processes are organized in a tree-like structure (`pstree`)

TI 3: Operating Systems and Computer Networks



3.15

Process Termination
Execution of process is completed
-process terminates itself by system call

Other user process terminates the process
-Parent process or other authorized processes

OS terminates process for protection reasons
-Invalid instruction (process tries to execute data) 
-Privileged instruction in user mode
-Process tries to access memory without permission
-I/O-Error
-Arithmetic error

Some exceptions can be caught and handled by the process. 

TI 3: Operating Systems and Computer Networks



3.16

Questions & Tasks
-What are disadvantages of the simple FIFO-queue in our simple process model?

-What could be alternatives?
-Start your favorite process monitor, then start programs, use them, terminate them and monitor the list of 
current processes and threads to get a better understanding of your system!

-How can you kill a process that goes crazy?
-Can you (as a normal user) kill all processes? Try it and see what happens! PLEASE: Do not do this while 
running anything important, save all files before you do this …

-What is the role of a administrator/root/superuser in this context?

TI III - Operating Systems and Computer Networks



3.17

Process Model
Simple model with two states

Problems
-Most of the processes will be waiting for IO
-Different IO devices
-Different priorities

 Extend the model

TI 3: Operating Systems and Computer Networks



3.18

Extended Process Model
Five states including creation, termination, and resource handling:
Running: currently being executed
Ready: ready to run, waiting for execution
Blocked: not ready to run, waiting for external event, e.g., completion of I/O operation
New: newly created process, not yet in running set
Exit: completed/terminated process, removed from running set

TI 3: Operating Systems and Computer Networks



3.19

Process States over Time

TI 3: Operating Systems and Computer Networks



3.20

Implementation of Process States
Assign process to different queues based on state of required resources
Two queues:
-Ready processes (all resources available)
-Blocked processes (at least one resource busy)

But what happens if processes need different resources?

TI 3: Operating Systems and Computer Networks



3.21

Improved Implementation
Several queues one for each resource / type of resource

More efficient, but fairness 
issues must be considered

TI 3: Operating Systems and Computer Networks

Event 1 Wait

Event 2 Wait

Event n Wait

Dispatch
ReleaseReady Queue

Admit
Processor

Timeout

Event 1 Queue
Event 1
Occurs

Event 2
Occurs

Event n
Occurs

Event 2 Queue

Event n Queue

(b) Multiple blocked queues



3.22

Suspension / Swapping of Processes
Swapping motivated by two observations:
-Physical main memory is (was) a scarce resource
-Blocked processes may wait for longer periods of time (e.g. during I/O, while waiting for requests, ...)
 Swap blocked processes to secondary storage thereby reducing memory usage

TI 3: Operating Systems and Computer Networks



3.23

Extended Process State Diagram
Two additional considerations
-Blocked/swapped processes may become ready to run when event occurs
-Ready and/or running processes may be swapped even without waiting for event

TI 3: Operating Systems and Computer Networks



3.24

Questions & Tasks
-What is a typical state for a typical program you use, such as e.g. text processing, email, chat etc.?

-So what is your computer normally doing (unless you are an active gamer…)?
-How do interrupts fit into the picture of processes, queues, scheduling?
-How and where to implement different priorities?
-What does swapping involve? Think of the memory hierarchy!

-Can you notice swapping?
-Can we swap all processes?

TI III - Operating Systems and Computer Networks



3.25

Processes and Resource Allocation
Process state reflects allocated resources:

TI 3: Operating Systems and Computer Networks

Running Blocked Ready/Suspended

Required resource available

Required resource not available



3.26

Global data structures for processes and resources usage

Process tables:
-Process Control Block (PCB)
-Location of process image in memory
-Resources (process-specific view)

Memory tables:
-Allocation of primary and secondary memory
-Protection attributes of blocks of (shared) memory
-Virtual memory management

I/O tables:
-Allocation of I/O devices, assignment to processes
-State of current operation and corresponding memory 
region

File tables:
-Currently open files
-Location on storage media / secondary memory
-State and attributes

TI 3: Operating Systems and Computer Networks



3.27

Process Control Table and Image

TI 3: Operating Systems and Computer Networks

Memory

Devices

Files

Processes

Process 1

Memory Tables

Process
Image

Process
1

Process
Image

Process
n

I/O Tables

File Tables

Primary Process Table

Process 2

Process 3

Process n



3.28

Kernel / Process Implementations
Separated kernel and processes:
-Separate memory and stack for kernel
-Kernel is no process
 Expensive and unsafe

TI 3: Operating Systems and Computer Networks

P1 P2 Pn

Kernel

(a) Separate kernel



3.29

Kernel / Process Implementations
Execution of system calls as part of user process, but in kernel mode:
-Kernel functions use same address space
-Same process switches into privileged mode (Ring 0)
 Less expensive and quite safe

TI 3: Operating Systems and Computer Networks

OS
Func-
tions

OS
Func-
tions

OS
Func-
tions

P1 P2 Pn

Process Switching Functions

(b) OS functions execute within user processes



3.30

Kernel / Process Implementations
Microkernel:
-Collection of system processes that provide OS services
 Quite expensive but very safe

TI 3: Operating Systems and Computer Networks

P1 P2 Pn OS1 OSk

(c) OS functions execute as separate processes

Process Switching Functions



3.31

Questions & Tasks
-Make sure you understand how to implement tables, references to tables, pointers etc.!
-What is “expensive” when it comes to certain kernel/process implementations?
-What can be “unsafe”?
-Read e.g. https://www.oreilly.com/library/view/understanding-the-linux/0596002130/ch01s06.html to get more 
insight! (Understanding the Linux Kernel, Daniel P. Bovet, Marco Cesati, O’Reilly)

TI III - Operating Systems and Computer Networks

https://www.oreilly.com/library/view/understanding-the-linux/0596002130/ch01s06.html


3.32

Example: UNIX – Architecture
Process architecture that executes kernel functions in the context of a user process

Two modes are used: user / kernel mode (Ring 3/Ring 0)
Two types of processes: system / user processes
 System processes are implemented as part of kernel to run background services, e.g. swapping

TI 3: Operating Systems and Computer Networks

OS
Func-
tions

OS
Func-
tions

OS
Func-
tions

P1 P2 Pn

Process Switching Functions



3.33

Example: UNIX – Process State Diagram

TI 3: Operating Systems and Computer Networks



3.34

Example: UNIX – Process States

TI 3: Operating Systems and Computer Networks



3.35

Related System Calls
int execve(const char *filename, char *const argv[], char *const envp[])
-Executes program pointed to by filename with arguments argv and environment envp (in the form of 
key=value)

-Effectively replaces the current program with another one
 exec() family of library function
pid_t fork(void)
-Creates child process that differs from parent only in its PID (process identifier) and PPID (parent process 
identifier)

-Returns 0 for child process and child’s PID for parent process
void _exit(int status)
-Terminates calling process; closes open file descriptors; children are adopted by process 1; signals termination 
to parent
 exit() library function
pid_t wait(int *status)
-Wait for state change in child of calling process

TI 3: Operating Systems and Computer Networks



3.36

Programming Example
#include <stdio.h>
#include <stdlib.h>
#include <sys/wait.h>

main()
{

int status;
pid_t pid;

pid = fork();
if(pid == 0) {
printf("Child process running...\n");
// Do something...
printf("Child process done.\n");
exit(123);

}
else if(pid > 0) {
printf("Parent process, waiting for child %d...\n", pid);
pid = wait(&status);
printf("Child process %d terminated, status %d.\n", pid, WEXITSTATUS(status));
exit(EXIT_SUCCESS);

}
else {
printf("fork() failed\n");
exit(EXIT_FAILURE);

}
}

TI 3: Operating Systems and Computer Networks



3.37

User-Level Process Control

TI 3: Operating Systems and Computer Networks



3.38

User-Level Process Control

TI 3: Operating Systems and Computer Networks



3.39

Content

1. Introduction and Motivation

2. Subsystems, Interrupts and System Calls

3. Processes

4. Memory

5. Scheduling

6. I/O and File System

7. Booting, Services, and Security

TI 3: Operating Systems and Computer Networks


	TI III: Operating Systems & Computer Networks �Processes
	Content
	Definitions of a Process
	Related Concepts to “Process”
	Program vs. Process
	Tasks of an OS concerning processes
	Process execution (Trace)
	Process execution (Trace)
	Questions & Tasks
	Simple Process Model
	Simple Process Model
	Process Control Block (PCB)
	Process Control Block (PCB)
	Reasons for Process Creation
	Process Termination
	Questions & Tasks
	Process Model
	Extended Process Model
	Process States over Time
	Implementation of Process States
	Improved Implementation
	Suspension / Swapping of Processes
	Extended Process State Diagram
	Questions & Tasks
	Processes and Resource Allocation
	Global data structures for processes and resources usage
	Process Control Table and Image
	Kernel / Process Implementations
	Kernel / Process Implementations
	Kernel / Process Implementations
	Questions & Tasks
	Example: UNIX – Architecture
	Example: UNIX – Process State Diagram
	Example: UNIX – Process States
	Related System Calls
	Programming Example
	User-Level Process Control
	User-Level Process Control
	Content

