
4.1

Prof. Dr.-Ing. Jochen Schiller
Computer Systems & Telematics

Prof. Dr.-Ing. Jochen Schiller
Computer Systems & Telematics
Freie Universität Berlin, Germany

TI III: Operating Systems & Computer Networks
Memory

TI 3: Operating Systems and Computer Networks

4.2

Content

1. Introduction and Motivation

2. Subsystems, Interrupts and System Calls

3. Processes

4. Memory

5. Scheduling

6. I/O and File System

7. Booting, Services, and Security

TI 3: Operating Systems and Computer Networks

4.3

Motivation
To which location in memory should the process image be loaded?

What happens to all the addresses contained in the process image?

How does the OS know that no other process is using that memory?

How can the OS prevent a process from accessing memory that it doesn’t “own”?

What’s the best method to efficiently manage memory requests?

TI 3: Operating Systems and Computer Networks

Operating
System

Memory

001010111
010011010
101010101
011011010
1010100...

4.4

Motivation
See course Computer Architecture!
• Here many pointers to this course
• Lecture does not cover all slides

TI 3: Operating Systems and Computer Networks

4.5

Memory Management
Closely related to processes
-Memory management isolates processes from each other

Goals
-Subdividing memory to accommodate multiple processes
-Memory needs to be allocated to ensure a reasonable supply of
ready processes to consume available processor time

Requirements
-Relocation: Location in (physical) memory unknown or may change
-Protection: Disallow access to memory of other processes
-Sharing: Data for communication (IPC), program copy for memory reduction

TI 3: Operating Systems and Computer Networks

Operating
System

Memory

4.6

Addressing
Physical Address
- The absolute address or actual location in main memory
- Used by the kernel (to implement logical addresses)

Relative Address
- Address expressed as a location relative to some known point
- Also commonly found in application programming (arrays)

Logical/Virtual Address
- Reference to memory location independent of current assignment of data to memory
- Translation must be made to physical address
- Requires hardware support

Address space
- Range of addresses that are (within the address space) unambiguously addressable

TI 3: Operating Systems and Computer Networks

4.7

Addressing

TI 3: Operating Systems and Computer Networks

4.8

Memory Access

TI 3: Operating Systems and Computer Networks

4.9

Questions & Tasks
-Can you imagine a computer system without memory management?
-What are pros and cons of having many/few processes in memory?
-Repeat relevant sections of Computer Architecture if you have to refresh your knowledge about caches,
memory access, memory hierarchy etc.

TI III - Operating Systems and Computer Networks

4.10

FIXED AND DYNAMIC PARTITIONING

TI 3: Operating Systems and Computer Networks

4.11

Fixed Partitioning

TI 3: Operating Systems and Computer Networks

4.12

Fixed Partitions

Memory partitioned into fixed pieces, each
partition can hold one process
Amount of processes in main memory is bounded
by the number of partitions

Internal fragmentation

TI 3: Operating Systems and Computer Networks

4.13

Dynamic Partitions
Memory is divided into variable sized partitions on demand

Although there is enough space left for P5 it can not be allocated to the process because it is not
continuous
External fragmentation

TI 3: Operating Systems and Computer Networks

4.14

Dynamic Partitioning

TI 3: Operating Systems and Computer Networks

4.15

Implementation

TI 3: Operating Systems and Computer Networks

4.16

Dynamic Placement Algorithms

First-fit algorithm:
-Scans memory from the beginning
Chooses first available block that is large enough

Next-fit algorithm:
-Scans memory from the location of the last placement
Tends to allocate block of memory at end of memory
(where largest block is commonly found)

TI 3: Operating Systems and Computer Networks

4.17

Buddy System
Combines advantages of fixed and dynamic allocation

Entire available space is treated as single block of size 2U bytes
-U := number of bits in address

If memory of size s is requested (2U-1 < s <= 2U), entire block is allocated
-Otherwise block is split into two equal buddies
-Process continues until smallest block greater than or equal to s is
generated

Free blocks can easily be merged into bigger blocks

Compactification eased by regularly sized blocks

TI 3: Operating Systems and Computer Networks

4.18

Buddy System: Example

TI 3: Operating Systems and Computer Networks

4.19

Buddy System: Example

TI 3: Operating Systems and Computer Networks

4.20

Fragmentation of main memory
Fragmentation: free cells in main memory are unusable because of the allocation scheme
-memory space is wasted

Internal fragmentation: the free memory cells are within the area allocated to a process
-occurs using fixed partitions

External fragmentation: the free memory cells are not in the area allocated to any process
-occurs using dynamic partitions

TI 3: Operating Systems and Computer Networks

4.21

Questions & Tasks
-What are the advantages and disadvantages of fixed and dynamic partitions, respectively?
-What happens if there is not enough memory available for placing a new block of memory?
-How does the size of partitions influence internal and external fragmentation, respectively?
-And how does this influence the management overhead?

TI III - Operating Systems and Computer Networks

4.22

PAGING

TI 3: Operating Systems and Computer Networks

4.23

Paging
Memory divided into small fixed-sized pieces,
called (page-)frames
Process images divided into pieces of the same
size, called pages

One frame of the main memory is allocated to
one page of a process

TI 3: Operating Systems and Computer Networks

4.24

Page Table
Operating system maintains page table for each
process
-Pages are mapped to frames

TI 3: Operating Systems and Computer Networks

4.25

Size of Frames/Pages
Paging creates no external fragmentation
-Since size of frames/pages is fixed

Internal fragmentation depends on frame size
-The smaller the frames the lower the internal fragmentation
-BUT: the smaller the frames the bigger the page tables

TI 3: Operating Systems and Computer Networks

4.26

Assignment of Pages to Frames
Example:

(a) – (d) Load processes A, B, and C
(e) Swap out process B
(f) Load process D

Page Tables

TI 3: Operating Systems and Computer Networks

4.27

Addresses
Memory address consists of a page number and offset within the page

TI 3: Operating Systems and Computer Networks

4.28

Translation of virtual to real addresses

TI II - Computer Architecture

Present/absent
bit

Virtual
page

Page
table

15-bit

1

Memory address
Output
register

1 110

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

1 0 0 0 0 0 0 0 0 1 0 1 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 1 1 0 Input
register

20-bit virtual page 12-bit offset

32-bit virtual address

4.29

Hardware Support (MMU)

Base register (starting address for the process)

Bounds register (ending location of the process)

Registers are set when process is loaded

Bounds register is used for security purpose

TI 3: Operating Systems and Computer Networks

MMU

Memory Management Unit

4.30

Paging Address Translation

TI 3: Operating Systems and Computer Networks

4.31

Support Needed for Virtual Memory
Hardware Support
-Present bit: Page/segment is available in main memory
-Modified bit: Content of page/segment has been modified
-Implementation:

-Paging:

OS must be able to manage moving pages between primary and secondary memory

TI 3: Operating Systems and Computer Networks

Other control bits:
• Write enabled
• Executable
• Shared between processes
• ...

4.32

Hierarchical Page Table
Page table itself may grow to considerable size

Swap parts of page table to secondary storage
-Problem: One virtual memory reference may cause two physical memory accesses (one to fetch page table,
one to fetch data)

-Performance penalty due to disk I/O delays

TI 3: Operating Systems and Computer Networks

4.33

Translation Lookaside Buffer
Problem: How to know which pages are loaded and up to date?

• Translation Lookaside Buffer (TLB)
• Built into CPU
• Caches most recently used page table entries

TI 3: Operating Systems and Computer Networks

4.34

Translation Lookaside Buffer
Basic steps:
1. Given a virtual address, processor examines TLB

- If page table entry is present (TLB hit)
 Retrieve frame number and form physical address

- If page table entry is not found in TLB (TLB miss)
 Fall back to process page table in main memory

- For hierarchical page tables, possibly start recursion

2. OS checks if page is present in main memory
- If not, issue page fault and fetch page from disk

3. Update TLB to include new page entry

TI 3: Operating Systems and Computer Networks

4.35

Translation Lookaside Buffer

TI 3: Operating Systems and Computer Networks

4.36

Translation Lookaside Buffer
Operation of Paging and Translation Lookaside Buffer

TI 3: Operating Systems and Computer Networks

4.37

Translation Lookaside Buffer

TI 3: Operating Systems and Computer Networks

4.38

Questions & Tasks
-Does it “hurt” (in terms of performance) if a process is distributed over several non-continuous pages?

- i.e. is memory defragmentation necessary? Explain difference to hard disk!
-Who calls the operating system if a page is not present in main memory? What happens to the process?
-Who “informs” the process if the needed page is available?
-How can the operating system speed-up the page table look-ups?
-What is the role of an MMU?

TI III - Operating Systems and Computer Networks

4.39

PAGE SIZE
Paging

TI 3: Operating Systems and Computer Networks

4.40

Page Size
Smaller page size …
- less amount of internal fragmentation
-more pages required per process
- large number of pages will be found in main memory

More pages per process means larger page tables
- large portion of page tables in virtual memory
-secondary memory is designed to efficiently transfer large blocks of data so a large page size is better

With time pages in memory will contain portions of the process near recent references
-Page faults low

Increased page size causes pages to contain locations further from any recent reference
-Page faults rise

TI 3: Operating Systems and Computer Networks

4.41

Page Size

TI 3: Operating Systems and Computer Networks

4.42

Example Page Sizes

TI 3: Operating Systems and Computer Networks

Architecture Smallest page size Larger page sizes

x86 (classical 32 bit) 4 kbyte 2 Mbyte, 4 Mbyte

x86-64 (64 bit) 4 kbyte 2 Mbyte, 1 Gbyte

IA-64 (Itanium, VLIW) 4 kbyte 8 / 64 / 256 kbyte, 1 / 4 / 16 / 256 Mbyte

SPARC v8 4 kbyte 256 kbyte, 16 Mbyte

UltraSPARC 8 kbyte 64 / 512 kbyte, 4 / 32 / 256 Mbyte, 2 / 16 Gbyte

ARMv7 4 kbyte 64 kbyte, 1 / 16 Mbyte

Power 4 kbyte 64 kbyte, 16 Mbyte, 1 Gbyte

4.43

PAGE REPLACEMENT
Paging

TI 3: Operating Systems and Computer Networks

4.44

Problem: Thrashing
VM Thrashing
Page/segment of process is swapped out just before its needed
-Happens under memory pressure, i.e., too many resource-hungry processes running on too little main memory

Processor spends most of its time swapping pages/segments rather than executing user instructions
Computer stalls with heavy disk I/O

Solution: “Good” page replacement policies
-Principle of Locality:

-Program and data references within a process tend to cluster
-Possible to make intelligent guesses about which pieces will be needed in the future

TI 3: Operating Systems and Computer Networks

4.45

Algorithms / Policies

Fetch Policy
Which page should be swapped in? When?

Alternatives
-Demand paging:

- only brings pages into main memory when reference is
made to address on page

-Prepaging:
- brings in more pages than needed
- anticipates future requests

Replacement Policy
Which page should be swapped out / replaced?

Approaches
- Remove page that is least likely to be referenced in near
future

- Most policies predict future behavior on basis of past
behavior, e.g.

- First-In, First Out (FIFO)
- Not Recently Used (NRU)
- Least Recently Used (LRU)
- ...

TI 3: Operating Systems and Computer Networks

4.46

Some Basic Replacement Algorithms
Optimal policy (for reference only)
-Selects page for which time to next reference is longest
Impossible to have perfect knowledge of future events

Least Recently Used (LRU)
-Replaces page that has not been referenced for longest time
-By principle of locality, least likely to be referenced in near future

First-in, First-out (FIFO)
-Treats page frames allocated to a process as circular buffer
-Pages are removed in round-robin style
-Page that has been in memory the longest is replaced (but may be needed soon)

Clock Policy
-When a page is first loaded in memory, use bit is set to 1
-When page is referenced, use bit is set to 1
-During search for replacement, each use bit is changed to 0
-When replacing pages, first frame with use bit set to 0 is replaced

TI 3: Operating Systems and Computer Networks

4.47

Page Replacement Example

TI 3: Operating Systems and Computer Networks

4.48

Page Replacement Example

TI 3: Operating Systems and Computer Networks

4.49

Comparison of Placement Algorithms

TI 3: Operating Systems and Computer Networks

4.50

RESIDENT SIZE
Paging

TI 3: Operating Systems and Computer Networks

4.51

Resident Set Size
Fixed-allocation
-Gives a process a fixed number of pages
-When a page fault occurs, one of the pages of that process must be replaced

Variable-allocation
-Number of pages varies over the lifetime of the process

TI 3: Operating Systems and Computer Networks

4.52

Resident Set Size
Decide ahead of time the amount of allocation to give a process
• If allocation is too small, there will be a high page fault rate
• If allocation is too large there will be too few programs in main memory

TI 3: Operating Systems and Computer Networks

4.53

Resident Set Size
Working Set of a process: set of pages of the process that have been referenced in the last t time units

TI 3: Operating Systems and Computer Networks

4.54

Working Set

TI 3: Operating Systems and Computer Networks

4.55

Load Control

Determines the number of processes that will be resident in
main memory

Too few processes, many occasions when all processes will be
blocked and much time will be spent in swapping

Too many processes will lead to thrashing

TI 3: Operating Systems and Computer Networks

4.56

Segmentation
All segments of all programs do not have to be of the same length

There is a maximum segment length

Addressing consist of two parts - a segment number and an offset

Since segments are not equal, segmentation is similar to dynamic partitioning

4.57

Questions & Tasks
-Where else do you know the “Principle of Locality” from? Which elements of a computer do also benefit from
this principle?

-How do you as a user recognize VM thrashing?
-Can the OS swap out all pages?
-Is the replacement algorithm relevant for larger number of allocated frames in memory processes? Why?

TI III - Operating Systems and Computer Networks

4.58

Example: Linux VM Implementation

TI 3: Operating Systems and Computer Networks

4 kB

Fixed in
main memory

Possibly swapped to disk

4.59

Example: Linux Memory Utilization

TI 3: Operating Systems and Computer Networks

4.60

Example: Windows Paging (perfmon)

TI 3: Operating Systems and Computer Networks

4.61

Related System Calls (Linux)
int brk(void *end_data_segment)
-Sets end of data segment of process to end_data_segment

void *sbrk(intptr_t increment)
- Increments the program’s data space by increment bytes

void *mmap(void *start, size_t length, int
prot, int flags, int fd, off_t offset)
-Maps length bytes of file descriptor fd to address start
-With flag MAP_ANONYMOUS no actual file is needed

int munmap(void *start, size_t length)
-Deletes mapping to specified address

TI 3: Operating Systems and Computer Networks

4.62

Related Library Wrappers
void *malloc(size_t size)
-Allocates size bytes and returns pointer
-Returns NULL if no memory is available

void free(void *ptr)
-Frees memory pointed to by ptr

void *calloc(size_t nmemb, size_t size)
-Allocates and zeroes memory for nmemb elements of size size bytes

void *realloc(void *ptr, size_t size)
-Changes size of previously allocated memory at ptr to size bytes

TI 3: Operating Systems and Computer Networks

4.63

Content

1. Introduction and Motivation

2. Subsystems, Interrupts and System Calls

3. Processes

4. Memory

5. Scheduling

6. I/O and File System

7. Booting, Services, and Security

TI 3: Operating Systems and Computer Networks

	TI III: Operating Systems & Computer Networks �Memory
	Content
	Motivation
	Motivation
	Memory Management
	Addressing
	Addressing
	Memory Access
	Questions & Tasks
	Fixed and Dynamic Partitioning�
	Fixed Partitioning
	�Fixed Partitions
	Dynamic Partitions
	Dynamic Partitioning
	Implementation
	Dynamic Placement Algorithms
	Buddy System
	Buddy System: Example
	Buddy System: Example
	�Fragmentation of main memory
	Questions & Tasks
	Paging
	Paging
	Page Table
	Size of Frames/Pages
	Assignment of Pages to Frames
	Addresses
	Translation of virtual to real addresses
	Hardware Support (MMU)
	Paging Address Translation
	Support Needed for Virtual Memory
	Hierarchical Page Table
	Translation Lookaside Buffer
	Translation Lookaside Buffer
	Translation Lookaside Buffer
	Translation Lookaside Buffer
	Translation Lookaside Buffer
	Questions & Tasks
	Page Size
	Page Size
	Page Size
	Example Page Sizes
	Page Replacement
	Problem: Thrashing
	Algorithms / Policies
	Some Basic Replacement Algorithms
	Page Replacement Example
	Page Replacement Example
	Comparison of Placement Algorithms
	Resident Size
	Resident Set Size
	Resident Set Size
	Resident Set Size
	Working Set
	Load Control
	Segmentation
	Questions & Tasks
	Example: Linux VM Implementation
	Example: Linux Memory Utilization
	Example: Windows Paging (perfmon)
	Related System Calls (Linux)
	Related Library Wrappers
	Content

