
5.1

Prof. Dr.-Ing. Jochen Schiller
Computer Systems & Telematics

Prof. Dr.-Ing. Jochen Schiller
Computer Systems & Telematics
Freie Universität Berlin, Germany

TI III: Operating Systems & Computer Networks
Scheduling

TI 3: Operating Systems and Computer Networks

5.2

Content

1. Introduction and Motivation

2. Subsystems, Interrupts and System Calls

3. Processes

4. Memory

5. Scheduling

6. I/O and File System

7. Booting, Services, and Security

TI 3: Operating Systems and Computer Networks

5.3

Definition and Goals
Assign processes to be executed by the processor(s)

More general: Assign consumers to resources
-Examples: I/O requests Device-specific queues
-Memory pages Primary/secondary memory

Goals:
-Throughput, i.e., effectively use processing time
-Response time / fairness, i.e., interactivity of individual processes
-Processor efficiency, i.e., optimal utilization of CPU (as resource)

Conflicting goals: Maximal throughput means unpredictable response time (and vice versa)

TI 3: Operating Systems and Computer Networks

5.4

Process States and Scheduling
Scheduling decisions correspond to state transitions in process state graph

TI 3: Operating Systems and Computer Networks

5.5

Process States and Scheduling

Scheduling decisions correspond to state
transitions in process state graph
- States form hierarchy depending on transition
frequency

TI 3: Operating Systems and Computer Networks

5.6

Types of Scheduling

Long-term scheduling
Whether to add process to running queue and execute it

- Determines which programs are admitted to system for
processing, e.g., based on user

- Specifies degree of multiprogramming, i.e., maximal number of
processes

- The more processes, the smaller percentage of time each
process is executed

How many processes should be allowed?

TI 3: Operating Systems and Computer Networks

5.7

Types of Scheduling

Medium-term scheduling
Whether to add/remove existing process (that is only
partially in primary memory)

- Part of swapping function
- Based on need to dynamically manage degree of

multiprogramming (considering available resources)

Should processes be swapped in or out? If so, which
ones?

TI 3: Operating Systems and Computer Networks

5.8

Types of Scheduling

Short-term scheduling
Which one of fully available processes to run

- Known as “dispatcher”
- Executes most frequently
Overhead / algorithmic complexity matters

- Invoked when event occurs (clock interrupts, I/O interrupts,
operating system calls, signals)

Whose turn is it?

TI 3: Operating Systems and Computer Networks

5.9

Types of Scheduling

I/O scheduling
Which I/O request (of which process) to dispatch to I/O
device for handling

Consider state of external device

TI 3: Operating Systems and Computer Networks

5.10

Short-Term Scheduling Criteria

User-oriented:
- Response time: elapsed time between submission of a
request until there is output
Interactivity: user perceives system as “responsive”

System-oriented (hardware and resources):
- Effective and efficient utilization of processor

Performance-related:
- Quantitative / measurable properties
- Examples: response time, throughput

Non-functional:
- Algorithmic properties
- Examples: predictability, fairness

TI 3: Operating Systems and Computer Networks

Performance-related Non-functional

User-oriented • Turnaround time
• Response time
• Deadlines

• Predictability

System-oriented • Throughput
• Processor utilization

• Fairness
• Enforcing priorities
• Balancing resources

5.11

Scheduler Implementation: Queuing

TI 3: Operating Systems and Computer Networks

5.12

Questions & Tasks
-Compare a TOP500 high-performance compute cluster with a standard PC, an on-board flight stabilization
controller and a game console when it comes to scheduling. What are typical long, mid and short term tasks?
Where should the focus be in system design in terms of throughput, response time, fairness, efficiency?

-What does a perfect scheduling system need? (OK, it does not exist, but in theory…)

TI III - Operating Systems and Computer Networks

5.13

Scheduling Decision Modes
Non-preemptive
-Current process explicitly yields CPU
Cooperative multitasking, e.g., Windows (<95), Mac OS (<X)

-Once a process is in running state, it will continue until it terminates or blocks itself for I/O

Preemptive
-OS may interrupt current process

- Transparent to process
Preemptive multitasking, e.g., Windows (≥95), Mac OS X, Unix

-Allows for better scheduling since no process can monopolize CPU

TI 3: Operating Systems and Computer Networks

5.14

Priorities
Some processes are more important than other processes, i.e., should get more CPU cycles or better
responsiveness than others
-Similar for other resources

Scheduling is controlled by per-process priorities
-OS internal vs. user-visible priorities

Scheduler will always choose a process of higher priority over one of lower priority

Lower-priority processes may suffer starvation, i.e. are never scheduled and do not make any progress

TI 3: Operating Systems and Computer Networks

5.15

Priority Implementation: Queuing
Have multiple ready queues to represent each level of priority
Move process data between queues according to scheduling algorithm

TI 3: Operating Systems and Computer Networks

5.16

Priority Inversion and Inheritance

Problem: Priority Inversion
Occurs when circumstances within the system
force a higher priority task (here: T1) to wait for a
lower priority task (here: T2)

Solution: Priority Inheritance
Lower-priority task (here: T3) inherits priority of
any higher priority task (here: T1) pending on a
resource they share

TI 3: Operating Systems and Computer Networks

5.17

Questions & Tasks
-What are prerequisites for preemptive scheduling? Who preempts and how can this work if a process does not
“want” to leave the processor?

- Is preemptive scheduling really transparent to processes?
-What are typical low-priority or high-priority processes, respectively?
-Go through the example for priority inversion/inheritance and try to understand it! Do you find an example in
everyday life?

TI III - Operating Systems and Computer Networks

5.18

Scheduling Algorithm Classes

Non-preemptive
- First-Come-First-Served (FCFS)
- Shortest Process Next (SPN)
- Highest Response Ratio Next (HRRN)

Preemptive
- Shortest Remaining Time (SRT)
- Round-Robin
- Feedback

TI 3: Operating Systems and Computer Networks

Example workload

5.19

First-Come-First-Served (FCFS)
New process placed at end of Ready queue
When current process ceases to execute, oldest process in the Ready queue is selected

Short process may have to wait a very long time before it can execute
Poor response time / interactivity
Favors CPU-bound processes
- I/O processes have to wait until CPU-bound process completes, since I/O processes frequently call into OS

TI 3: Operating Systems and Computer Networks

5.20

Shortest Process Next (SPN)
Process with shortest expected processing time is selected
-OS may abort processes with incorrect time estimates

Short processes jump ahead of longer processes

Improves interactivity (based on assumption that short processes are due to user interaction)
Predictability of longer processes is reduced
Possibility of starvation for longer processes
TI 3: Operating Systems and Computer Networks

5.21

Highest Response Ratio Next (HRRN)
Choose next process with the highest ratio

Even long process will run eventually
Generally, predictable response times not feasible without preemption

TI 3: Operating Systems and Computer Networks

time spent waiting + expected service time
expected service time

5.22

Shortest Remaining Time (SRT)
Ready queue is sorted by remaining processing time
-Requires estimate of remaining processing time

New processes may preempt current process upon arrival
-Preemptive version of shortest process next policy

Improved response time of short processes by using preemption
-Limited additional overhead due to process switches upon process creation
But what happens to interactive requests that don’t spawn a new process?

TI 3: Operating Systems and Computer Networks

5.23

Round-Robin
Each process may use CPU for given amount of time
-Process preemption based on clock interrupt generated at periodic intervals, i.e., time slicing
-Time quantum q as tunable parameter

When interrupt occurs, currently running process is placed in Ready queue, next ready job is selected

Initial support for interactivity
Scheduling overhead (scheduling decision, process switch)
Tradeoff between interactivity and efficiency, directly tunable by q
Problematic for I/O processes that hardly ever use full quantum

TI 3: Operating Systems and Computer Networks

5.24

Feedback
Processes start in the queue with highest priority RQ0 and move to queues with lower priority after
each time slice
-Multiple queues with different priorities

For fairness, allow longer time slices q for queues RQi

Penalize long running processes
No need to know remaining execution time of process
TI 3: Operating Systems and Computer Networks

5.25

Qualitative Comparison of Policies

TI 3: Operating Systems and Computer Networks

w = time spent waiting, e = time spent in execution so far, s = total service time required by process, including e

5.26

Quantitative Comparison of Policies

TI 3: Operating Systems and Computer Networks

5.27

Questions & Tasks
-Which scheduler is good for long jobs, gaming console, guaranteed processing time, normal PC, elevator
controller, mobile phone? Why? (and remember: it depends …)

-Go through the comparison table and try to understand the figures (e.g. what does Tr mean?)! Is there a
winner?

TI III - Operating Systems and Computer Networks

5.28

MULTIPROCESSOR AND REAL-TIME SCHEDULING

TI 3: Operating Systems and Computer Networks

5.29

Multiprocessor Scheduling
Assignment of processes to processors
-Permanently assign process to a processor
-Treat processors as a pooled resource and assign process to processors on demand

- Possibly move running process between processors (expensive!)

Architectures
-Global queue: schedule to any available processor
-Master/slave: Key kernel functions always run on a particular processor, master is responsible for scheduling
-Peer: Operating system can execute on any processor, each processor does self-scheduling

Use of multiprogramming on individual processors

Actual dispatching of processes

TI 3: Operating Systems and Computer Networks

5.30

Real-Time Scheduling
Correctness of system depends
-on logical result of the computation
-AND on time at which the results are produced

Tasks or processes attempt to control or react to events that take place in outside world

Examples:
-Control of laboratory experiments
-Process control in industrial plants
-Robotics
-Air traffic control
-Telecommunications
-Military command and control systems

Real-time applications are not (that much) concerned with speed but with completing tasks

TI 3: Operating Systems and Computer Networks

5.31

Real-Time Scheduling: Examples

TI 3: Operating Systems and Computer Networks

5.32

Questions & Tasks
-Do you use real-time operating systems in your everyday life?
-And what about multiprocessor scheduling?
-Why is it expensive to move a process from one processor to another?
-What happens if a process announces a wrong deadline or has an infinite loop in RT-scheduling? What can the
OS do?

TI III - Operating Systems and Computer Networks

5.33

Examples: Traditional UNIX Scheduling

Multilevel feedback using round robin within each priority queue

If running process does not block or complete within one second, it is preempted

Priorities are recomputed once per second

Base priority (set upon process creation) divides all processes into fixed bands of priority levels

TI 3: Operating Systems and Computer Networks

5.34

Examples: UNIX SVR4 Scheduling

Preemptable static priority scheduler

Introduces set of 160 priority levels divided into
three priority classes
-Highest preference to real-time processes
-Next-highest to kernel-mode processes
-Lowest preference to other user-mode processes

In-kernel preemption points, i.e. long running
kernel operations may be preempted

SVR4 Priority Classes:
-Real time (159 – 100)
-Kernel (99 – 60)
-Time-shared (59-0)

TI 3: Operating Systems and Computer Networks

5.35

Examples: Windows Scheduling

Priorities organized into two bands or classes
-Real time
-Variable

Priority-driven preemptive scheduler within each
class

TI 3: Operating Systems and Computer Networks

5.36

Example: Linux O(1) Scheduling

Scheduling algorithm needs to scale with number of
processes
- Variable overhead unacceptable for real-time systems

 Linux O(1) scheduler

- Active/expired bit arrays for priorities; one list per priority
- Priority assigned based on

- Static (process) priority
- Heuristics to determine interactivity requirements, e.g. CPU- vs.

I/O-bound
- Process timeslice (i.e. runtime in relation to other
processes) calculated when process moves from active to
expired state

- Switch from active to expired bit array when all processes
have used their timeslice

Scheduling decision in constant time

TI 3: Operating Systems and Computer Networks

5.37

Related System Calls (Linux)

int sched_yield(void)
-Voluntarily yield processor, e.g. when waiting for input

int getpriority(int which, int who)
int setpriority(int which, int who, int prio)
-Get/set priority of user, group or process (which) with ID who
- Library interface: int nice(int inc)

- Increment how nice you are; only root is allow not to be nice

int sched_get_priority_max(int policy)
int sched_get_priority_min(int policy)
-Returns max/min priority values for given scheduling policy

TI 3: Operating Systems and Computer Networks

5.38

Related System Calls (Linux, cont.)
int sched_setscheduler(pid_t pid, int policy,
conststruct sched_param *param)
int sched_getscheduler(pid_t pid)
- Controls which scheduling policy to use for a process
- Policies are SCHED_BATCH, SCHED_FIFO, SCHED_RR and SCHED_OTHER

int sched_setparam(pid_t pid, const struct sched_param
*param)
int sched_getparam(pid_t pid, struct sched_param *param)
- Get/set policy specific scheduling parameters

int sched_setaffinity(pid_t pid, unsigned int
cpusetsize, cpu_set_t *mask)
int sched_getaffinity(pid_t pid, unsigned int
cpusetsize, cpu_set_t *mask)
- Controls on which CPU in multi-processor system a process can/should run

TI 3: Operating Systems and Computer Networks

5.39

Content

1. Introduction and Motivation

2. Subsystems, Interrupts and System Calls

3. Processes

4. Memory

5. Scheduling

6. I/O and File System

7. Booting, Services, and Security

TI 3: Operating Systems and Computer Networks

	TI III: Operating Systems & Computer Networks �Scheduling
	Content
	Definition and Goals
	Process States and Scheduling
	Process States and Scheduling
	Types of Scheduling
	Types of Scheduling
	Types of Scheduling
	Types of Scheduling
	Short-Term Scheduling Criteria
	Scheduler Implementation: Queuing
	Questions & Tasks
	Scheduling Decision Modes
	Priorities
	Priority Implementation: Queuing
	Priority Inversion and Inheritance
	Questions & Tasks
	Scheduling Algorithm Classes
	First-Come-First-Served (FCFS)
	Shortest Process Next (SPN)
	Highest Response Ratio Next (HRRN)
	Shortest Remaining Time (SRT)
	Round-Robin
	Feedback
	Qualitative Comparison of Policies
	Quantitative Comparison of Policies
	Questions & Tasks
	Multiprocessor and Real-Time Scheduling�
	Multiprocessor Scheduling
	Real-Time Scheduling
	Real-Time Scheduling: Examples
	Questions & Tasks
	Examples: Traditional UNIX Scheduling
	Examples: UNIX SVR4 Scheduling
	Examples: Windows Scheduling
	Example: Linux O(1) Scheduling
	Related System Calls (Linux)
	Related System Calls (Linux, cont.)
	Content

