
6.1

Prof. Dr.-Ing. Jochen Schiller
Computer Systems & Telematics

TI III: Operating Systems & Computer Networks
I/O and File System

TI 3: Operating Systems and Computer Networks

Prof. Dr.-Ing. Jochen Schiller
Computer Systems & Telematics
Freie Universität Berlin, Germany

6.2

Content

1. Introduction and Motivation

2. Subsystems, Interrupts and System Calls

3. Processes

4. Memory

5. Scheduling

6. I/O and File System

7. Booting, Services, and Security

TI 3: Operating Systems and Computer Networks

6.3

Operating System Design and I/O

TI 3: Operating Systems and Computer Networks

6.4

Operating System Design and I/O
Efficiency Problems

- I/O (usually) cannot keep up with processor speed
- Use of multiprogramming allows for some processes to be waiting on I/O while another process executes
- Most I/O devices extremely slow compared to main memory
- Swapping is used to bring in additional Ready processes (requires I/O operations)

Generality
- Desirable to handle all I/O devices in a uniform manner, i.e., provide good abstraction to application

programmer
- Hide most of details of device I/O in lower-level routines
Processes and upper levels see devices in general terms, e.g., read, write, open, close, lock, unlock

Conflicting goals motivate focus on API design

TI 3: Operating Systems and Computer Networks

6.5

Types of I/O Devices
Wide variety of I/O devices

- Human readable, e.g., display, keyboard, mouse
- Machine readable, e.g., disk and tape drives, sensors, controllers, actuators
- Communication, e.g., digital line drivers, modems

Data rate
- Application

(software support, priority)
- Complexity of control
- Unit of transfer

(stream, blocks, characters)
- Data representation
- Encoding schemes
- Error conditions

TI 3: Operating Systems and Computer Networks

6.6

Alternatives for I/O Organization

Device abstraction
- Character-based I/O

- E.g. input devices like keyboard or mouse
- Block-based I/O

- E.g. data storage
Not necessarily related to implementation, e.g. USB

Communication endpoint (socket) abstraction
- Used for networking
Second part of this lecture

File abstraction
- Structured, persistent storage
- Sometimes with additional semantics, e.g., locking,

transaction support, etc.

TI 3: Operating Systems and Computer Networks

6.7

Evolution of the I/O Function

TI 3: Operating Systems and Computer Networks

1 • Processor directly controls a peripheral device

2 • A controller or I/O module is added

3 • Same configuration as step 2, but now interrupts are employed

4 • The I/O module is given direct control of memory via DMA

5
• The I/O module is enhanced to become a separate processor,

with a specialized instruction set tailored for I/O

6
• The I/O module has a local memory of its own and is, in fact, a

computer in its own right

6.8

I/O Related Programming Techniques
Programmed I/O

- Process is busy-waiting for the operation to complete

Interrupt-driven I/O
- I/O command is issued
- Processor continues executing instructions
- I/O module sends an interrupt when done

Direct Memory Access (DMA)
- DMA module controls exchange of data between main memory and the I/O device
- Processor interrupted only after entire block has been transferred

TI 3: Operating Systems and Computer Networks

while (*IO_STATUS_ADDR != IO_DONE){}

6.9

Comparison of I/O Techniques
Programmed I/O

- Only when there’s no alternative, e.g., timing with very high accuracy
Interrupt-driven I/O

- Event-based programming, e.g., user input
Direct memory access

- Data transfer, e.g. disk I/O, graphics operations, network packet processing

TI 3: Operating Systems and Computer Networks

6.10

Direct Memory Access

Moving data between main memory and
peripherals is a simple operation, but keeps CPU
busy

Delegate I/O operation to extra hardware: DMA
module

DMA module transfers data directly to or from
memory

- “For-loop in hardware”
Continuous memory regions

When complete, DMA module sends interrupt
signal to CPU

TI 3: Operating Systems and Computer Networks

6.11

DMA Configurations

a) Single-bus, detached DMA
Simple, but inefficient
Requires multiple I/O requests to device

b) Single-bus, integrated DMA-I/O
Efficient, but expensive
One controller per device (group)

c) I/O bus
Efficient and less expensive
Separate bus, one controller

TI 3: Operating Systems and Computer Networks

6.12

I/O Buffering
Main memory used to temporarily store data

- Mitigates differences in data processing speeds
- Processes must wait for I/O to complete before proceeding

- Manage pages that must remain in main memory during I/O
- Buffer must be accessible to low-level drivers and hardware

Approaches (with different buffering strategies)

- Block-oriented
- Information is stored in fixed sized blocks
- Transfers are made one block at a time
- Used for disks and tapes

- Stream-oriented (stream of characters)
- Transfer information as a stream of bytes
- Used for terminals, printers, communication ports, mouse and other pointing devices, and most other devices that

are not secondary storage

TI 3: Operating Systems and Computer Networks

6.13

I/O Buffering Implementations
No buffering

TI 3: Operating Systems and Computer Networks

6.14

I/O Buffering Implementations
Single buffering

- Block-oriented: User process can process one fixed-sized block of data while next block is read in
- Stream-oriented: Process one variable-sized and delimited line at time

TI 3: Operating Systems and Computer Networks

6.15

I/O Buffering Implementations
Double buffering
Process can transfer data to or from one buffer while OS empties or fills other buffer

TI 3: Operating Systems and Computer Networks

6.16

I/O Buffering Implementations
Circular/ring buffering

- Each individual buffer is one unit in circular buffer
Used when I/O operation must keep up with process

TI 3: Operating Systems and Computer Networks

6.17

Questions & Tasks
- If you want to learn more, please check the hidden slides (i.e. slides not covered in the video/lecture but

available via the PDF)!
- Programmed I/O (PIO) looks pretty inefficient – but are there also situations where PIO has advantages over

DMA?
- Point out bottlenecks in the DMA configurations! Are you aware of more efficient solutions? (Hint: check current

PC architectures, PCIe etc.)

TI III - Operating Systems and Computer Networks

6.18

Disk Drive as Mass Storage

TI 3: Operating Systems and Computer Networks

6.19

Disk Drive as Mass Storage

TI 3: Operating Systems and Computer Networks

6.20

I/O Scheduling
For a single resource there will be a number of I/O requests

- From one or several processes
- Some devices keep internal state, so ordering of I/O requests matters

Example: Disk access

- Access time
- Sum of seek time and rotational delay

- Time it takes to get in position to read or write
Seek time is the reason for differences in performance

- Data transfer occurs as the sector moves under the head
Reorder I/O requests according to current state of disk

TI 3: Operating Systems and Computer Networks

6.21

Positioning the Read/Write Heads
When the disk drive is operating, the disk is rotating at constant speed

To read or write the head must be positioned at the desired track and at the beginning of the desired sector on
that track

Track selection involves moving the head in a movable-head system or electronically selecting one head on a
fixed-head system

On a movable-head system the time it takes to position the head at the track is known as seek time

The time it takes for the beginning of the sector to reach the head is known as rotational delay

The sum of the seek time and the rotational delay equals the access time

TI 3: Operating Systems and Computer Networks

6.22

Disk Scheduling Algorithms

TI 3: Operating Systems and Computer Networks

		Name

		Description

		Remarks

		Selection according to requestor

			RSS

		Random scheduling

		For analysis and simulation

			FIFO

		First in first out

		Fairest of them all

			PRI

		Priority by process

		Control outside of disk queue management

			LIFO

		Last in first out

		Maximize locality and resource utilization

		Selection according to requested item

			SSTF

		Shortest service time first

		High utilization, small queues

			SCAN

		Back and forth over disk

		Better service distribution

			C-SCAN

		One way with fast return

		Lower service variability

			N-step-SCAN

		SCAN of N records at a time

		Service guarantee

			FSCAN

		N-step-SCAN with N = queue size at beginning of SCAN cycle

		Load sensitive

6.23

Disk I/O Scheduling Policies
Example

- Disk with 200 tracks
- Disk request queue has random requests
- Order of requests

55, 58, 39, 18, 90, 160, 150, 38, 184

TI 3: Operating Systems and Computer Networks

6.24

First-In, First-Out (FIFO)
Processes in sequential order
Fair to all processes
Approximates random scheduling in performance if there are many processes competing for the disk

TI 3: Operating Systems and Computer Networks

Requests: 55, 58, 39, 18, 90, 160, 150, 38, 184

6.25

Shortest Service Time First (SSTF)
Select the disk I/O request that requires the least movement of the disk arm from its current position
Always choose the minimum seek time

TI 3: Operating Systems and Computer Networks

Requests: 55, 58, 39, 18, 90, 160, 150, 38, 184

Service order: 90, 58, 55, 39, 38, 18, 150, 160, 184

6.26

SCAN
Also known as the elevator algorithm
Arm moves in one direction only

- satisfies all outstanding requests until it reaches the last track in that direction then the direction is reversed
Favors jobs whose requests are for tracks nearest to both innermost and outermost tracks

TI 3: Operating Systems and Computer Networks

Requests: 55, 58, 39, 18, 90, 160, 150, 38, 184

Service order: 150, 160, 184, 90, 58, 55, 39, 38, 18

6.27

C-SCAN (Circular SCAN)
Restricts scanning to one direction only
When the last track has been visited in one direction, the arm is returned to the opposite end of the disk and the
scan begins again

TI 3: Operating Systems and Computer Networks

Requests: 55, 58, 39, 18, 90, 160, 150, 38, 184

Service order: 150, 160, 184, 18, 38, 39, 55, 58

6.28

N-Step-SCAN
Segments the disk request queue into subqueues of length N
Subqueues are processed one at a time, using SCAN
While a queue is being processed new requests must be added to some other queue
If fewer than N requests are available at the end of a scan, all of them are processed with the next scan

TI 3: Operating Systems and Computer Networks

6.29

FSCAN
Uses two subqueues
When a scan begins, all of the requests are in one of the queues, with the other empty
During scan, all new requests are put into the other queue
Service of new requests is deferred until all of the old requests have been processed

TI 3: Operating Systems and Computer Networks

6.30

Comparison of Disk Scheduling Algorithms

TI 3: Operating Systems and Computer Networks

6.31

Disk Cache
Main memory buffer for disk sectors

- Contains copy of subset of sectors on disk
Speeds up I/O requests to these sectors

Policies:
- Least Recently Used

- Block longest in cache with no reference to it is replaced
- Least Frequently Used

- Block with fewest references is replaced
Reference count is misleading for bursty access patterns

TI 3: Operating Systems and Computer Networks

6.32

RAID
Redundant Array of Independent Disks

Set of physical disk drives viewed by the operating system as a single logical drive

Data are distributed across the physical drives of an array

Redundant disk capacity is used to store parity information

TI 3: Operating Systems and Computer Networks

6.33

RAID Levels

TI 3: Operating Systems and Computer Networks

6.34

RAID Level 0
Not a true RAID because it does not include redundancy to improve performance or provide data protection
User and system data are distributed across all of the disks in the array
Logical disk is divided into strips

TI 3: Operating Systems and Computer Networks

6.35

RAID Level 1
Redundancy is achieved by the simple expedient of duplicating all the data
There is no “write penalty”
When a drive fails the data may still be accessed from the second drive
Principal disadvantage is the cost

TI 3: Operating Systems and Computer Networks

6.36

RAID Level 2
Makes use of a parallel access technique
Data striping is used
Typically a Hamming code is used
Effective choice in an environment in which many disk errors occur

TI 3: Operating Systems and Computer Networks

6.37

RAID Level 3
Requires only a single redundant disk, no matter how large the disk array
Employs parallel access, with data distributed in small strips
Can achieve very high data transfer rates

TI 3: Operating Systems and Computer Networks

6.38

RAID Level 4
Makes use of an independent access technique
A bit-by-bit parity strip is calculated across corresponding strips on each data disk, and the parity bits are stored in
the corresponding strip on the parity disk
Involves a write penalty when an I/O write request of small size is performed

TI 3: Operating Systems and Computer Networks

6.39

RAID Level 5
Similar to RAID-4 but distributes the parity bits across all disks
Typical allocation is a round-robin scheme
Has the characteristic that the loss of any one disk does not result in data loss

TI 3: Operating Systems and Computer Networks

6.40

RAID Level 6
Two different parity calculations are carried out and stored in separate blocks on different disks
Provides extremely high data availability
Incurs a substantial write penalty because each write affects two parity blocks

TI 3: Operating Systems and Computer Networks

6.41

UNIX SVR4 I/O

Each individual device is associated with a special
file:

- /dev/dsp0: First sound card
- /dev/hda: IDE, primary master
- /dev/hda1: First partition on

/dev/hda
- /dev/tty: Controlling terminal
- ...

Two types of I/O:
- Buffered (default)
- Unbuffered (raw)

TI 3: Operating Systems and Computer Networks

I/O

6.42

Questions & Tasks
- Compare an SSD with an HD when it comes to I/O scheduling. What are the differences?
- What determines the performance of the different disk scheduling algorithms?
- What are disadvantages of RAID-systems? Where do they have their single point of failure?

TI III - Operating Systems and Computer Networks

6.43

Content

1. Introduction and Motivation

2. Subsystems, Interrupts and System Calls

3. Processes

4. Memory

5. Scheduling

6. I/O and File System

7. Booting, Services, and Security

TI 3: Operating Systems and Computer Networks

6.44

File System Overview

TI 3: Operating Systems and Computer Networks

6.45

File System Overview
Goals

- Meet data management needs and requirements of user
- Guarantee that data in file is valid (over time)
- Optimize performance
- Provide I/O support for variety of storage device types
- Minimize or eliminate the potential for lost or destroyed data (redundancy)
- Provide a standardized set of I/O interface routines
- Provide I/O support for multiple users

- Concurrency, access control, etc.

TI 3: Operating Systems and Computer Networks

6.46

File System Overview
Types of File Systems

Disk File Systems
- Windows: FAT, FAT16, FAT32, NTFS
- Linux: ext, ext2, ext3
- UNIX: UFS, …
- MAC OS X: HFS, HFS+

Distributed File Systems
- NFS, AFS, SMB

Special Purpose File Systems

TI 3: Operating Systems and Computer Networks

6.47

File System Overview
Properties

- Long-term existence
- Sharable between processes
- Structure (internal /organizational)

Typical File Operations
- Create Create new file
- Delete Delete existing file
- Open Open new/existing file
- Close Close open file
- Read Read data from open file
- Write Write data to open file

TI 3: Operating Systems and Computer Networks

6.48

Minimal User Requirements
Each user ...

TI 3: Operating Systems and Computer Networks

1 • should be able to create, delete, read, write and modify files

2 • may have controlled access to other users’ files

3 • may control what type of accesses are allowed to the files

4 • should be able to restructure the files in a form appropriate to the problem

5 • should be able to move data between files

6 • should be able to back up and recover files in case of damage

7 • should be able to access his or her files by name rather than by numeric identifier

6.49

File System Architecture

Access Method (API)
- Reflect different file structures
- Different ways to access data

Logical I/O
- Enables users to access records
- General-purpose record I/O capability
- Maintains basic data about file

Basic I/O Supervisor
- I/O initiation and termination
- Selection of the I/O device
- Scheduling to optimize performance

Basic File System
- Physical I/O
- Placement of blocks
- Buffers blocks in main memory

Device Drivers
- Communicate with peripheral devices
- Responsible for starting I/O operations on a device
- Processes completion of I/O request

TI 3: Operating Systems and Computer Networks

6.50

Elements of File Management

TI 3: Operating Systems and Computer Networks

6.51

File Organization Types

TI 3: Operating Systems and Computer Networks

Five of the common
file organizations

are:

The pile

The
sequential

file

The indexed
sequential

file
The

indexed
file

The direct, or
hashed, file

6.52

The Pile

Least complicated form of file organization
Data are collected in the order they arrive
Each record consists of one burst of data
Purpose is simply to accumulate the mass of
data and save it
Record access is by exhaustive search

TI 3: Operating Systems and Computer Networks

6.53

The Sequential File

Most common form of file structure
A fixed format is used for records
Key field uniquely identifies the record
Typically used in batch applications
Only organization that is easily stored on tape
as well as disk

TI 3: Operating Systems and Computer Networks

6.54

Indexed Sequential File

Adds an index to the file to support random
access
Adds an overflow file
Greatly reduces the time required to access a
single record
Multiple levels of indexing can be used to
provide greater efficiency in access

TI 3: Operating Systems and Computer Networks

6.55

Indexed File

Records are accessed only through their
indexes
Variable-length records can be employed
Exhaustive index contains one entry for every
record in the main file
Partial index contains entries to records where
the field of interest exists
Used mostly in applications where timeliness of
information is critical
Examples would be airline reservation systems
and inventory control systems

TI 3: Operating Systems and Computer Networks

6.56

Direct or Hashed File

Access directly any block of a known address
Makes use of hashing on the key value
Often used where:

- very rapid access is required
- fixed-length records are used
- records are always accessed one at a time

TI 3: Operating Systems and Computer Networks

Examples are:

• directories
• pricing tables
• schedules
• name lists

6.57

Grades of Performance

TI 3: Operating Systems and Computer Networks

6.58

Operations Performed on a Directory
To understand the requirements for a file structure, it is helpful to consider the types of operations that may be
performed on the directory:

TI 3: Operating Systems and Computer Networks

Search Create
files

Delete
files

List
directory

Update
directory

6.59

File Directories
Contains information about files

- Attributes, e.g., read/write/executable bits, access time
- Ownership, e.g., user/group or Access Control List (ACL)
- Location with regard to logical structure of medium

Directory itself may be implemented as file owned by operating system

Provides mapping between file names and files themselves
- “inodes” in Unix
One file can have multiple names (“hard links”)

Structure
- List of entries, one for each file
- Sequential file with name of file serving as key
- Initially no support for organizing files (except for naming)

- Forces user to be careful not to use the same name for two different files
TI 3: Operating Systems and Computer Networks

6.60

Multi-Level Directories
Two-level Scheme (historical)

- One directory for each user and a master directory
- Master directory contains entry for each user
- Each user directory is a simple list of files for that user
 Provides no help in structuring collections of files

TI 3: Operating Systems and Computer Networks

6.61

Multi-Level Directories
Hierarchical / Tree-Structure

- Master directory with user directories underneath it
- Each user directory may have subdirectories and files as entries
- Some operating systems use multiple trees with own identifiers, e.g., drive letters (A:, C:)

TI 3: Operating Systems and Computer Networks

6.62

Hierarchical/Tree-Structured Directory

Files are located by following path from root
(master) directory down various branches
Pathname of file

Supports several files with same file name as long
as path names differ

Per-process current directory is working directory

Files are referenced relative to current working
directory (CWD)

TI 3: Operating Systems and Computer Networks

6.63

File Sharing

TI 3: Operating Systems and Computer Networks

Two issues arise
when allowing files

to be shared among
a number of users

Access rights
Management of
simultaneous

access

6.64

Access Rights

None
- User may not know of existence of file
- User is not allowed to read user directory that includes file

Knowledge
- User can only determine that file exists and who its owner is

Execution
- User can load and execute program but cannot copy it

Reading
- User can read file for any purpose, including copying and

execution
Appending

- User can add data to file but cannot modify or delete any of
its contents

Updating
- User can modify, delete and add to file’s data
- Includes creating file, rewriting it and removing all or part of

its data
Changing protection

- User can change access rights granted to other users
Deletion

- User can delete a file
Owner

- All rights previously listed
- Grant rights to others using classes of users:

- Specific user
- User groups
- Everybody

TI 3: Operating Systems and Computer Networks

• Complex access policies implemented with Access Control Lists (ACLs)
 Watch out for semantic differences between files and directories!

6.65

User Access Rights

TI 3: Operating Systems and Computer Networks

Owner

usually the
initial creator

of the file

has full rights

may grant
rights to
others

Specific
Users

individual
users who

are
designated
by user ID

User
Groups

a set of
users who

are not
individually

defined

All

all users who
have access

to this
system

these are
public files

6.66

Access Matrix
The basic elements are

- subject: an entity capable of accessing objects
- object: anything to which access is controlled
- access right: the way in which an object is accessed by a subject

TI 3: Operating Systems and Computer Networks

6.67

Access Control Lists

A matrix may be decomposed by columns,
yielding access control lists

The access control list lists users and their
permitted access rights

TI 3: Operating Systems and Computer Networks

6.68

Capability Lists

Decomposition by rows yields capability tickets

A capability ticket specifies authorized objects
and operations for a user

TI 3: Operating Systems and Computer Networks

6.69

Questions & Tasks
- Check out the file system on your computer – on the command line and using a window-based UI! How do you

set certain access rights? Encryption?
- Can a computer use different file systems at the same time for different storage devices?
- We are typically very much used to tree-structures for file systems. Are there alternatives? What are

advantages/disadvantages?
- What is a link/shortcut?

TI III - Operating Systems and Computer Networks

6.70

Secondary Storage Management
Secondary storage space must be allocated to files
Must keep track of space available for allocation

TI 3: Operating Systems and Computer Networks

6.71

File Allocation
On secondary storage, a file consists of a collection of blocks

The operating system or file management system is responsible for allocating blocks to files

The approach taken for file allocation may influence the approach taken for free space management

Space is allocated to a file as one or more portions (contiguous set of allocated blocks)

File allocation table (FAT)
- data structure used to keep track of the portions assigned to a file

TI 3: Operating Systems and Computer Networks

6.72

Preallocation vs Dynamic Allocation
A preallocation policy requires that the maximum size of a file be declared at the time of the file creation request

For many applications it is difficult to estimate reliably the maximum potential size of the file
- Tends to be wasteful because users and application programmers tend to overestimate size

Dynamic allocation allocates space to a file in portions as needed

TI 3: Operating Systems and Computer Networks

6.73

Secondary Storage Management
File Allocation Methods

Contiguous allocation
- Single set of blocks is allocated to a file at time of creation
- Single entry in file allocation table (starting block, length of file)
Incurs fragmentation; changing size of a file is expensive

Chained allocation
- Allocation on basis of individual block
- Each block contains a pointer to next block in chain
- Single entry in file allocation table (starting block, length of file)
Seeking within file (random access) is expensive

Indexed allocation
- File allocation table contains a separate one-level index for each file
- The index has one entry for each portion allocated to file
- The file allocation table contains block number for index
Avoids problems mentioned above, incurs some storage overhead

TI 3: Operating Systems and Computer Networks

6.74

Methods of File Allocation
Contiguous File Allocation

- A single contiguous set of blocks is allocated to a file at the time of file creation
- Preallocation strategy using variable-size portions
- Is the best from the point of view of the individual sequential file

External fragmentation on disk

TI 3: Operating Systems and Computer Networks

6.75

Methods of File Allocation

TI 3: Operating Systems and Computer Networks

Contiguous File Allocation (After Compaction)

6.76

Methods of File Allocation
Chained Allocation

- Allocation is on an individual block basis
- Each block contains a pointer to the next block in the chain
- The file allocation table needs just a single entry for each file
- No external fragmentation to worry about
- Best for sequential files

Low random access performance
TI 3: Operating Systems and Computer Networks

6.77

Methods of File Allocation

TI 3: Operating Systems and Computer Networks

Chained Allocation After Consolidation

6.78

Methods of File Allocation

Indexed Allocation with Block Portions

Indexing overhead

Index Allocation with Variable-Length Portions

Good compromise
TI 3: Operating Systems and Computer Networks

6.79

File Allocation Methods

TI 3: Operating Systems and Computer Networks

		

		Contiguous

		Chained

		Indexed

		Preallocation?

		Necessary

		Possible

		Possible

		Fixed or variable size portions?

		Variable

		Fixed blocks

		Fixed blocks

		Variable

		Portion size

		Large

		Small

		Small

		Medium

		Allocation frequency

		Once

		Low to high

		High

		Low

		Time to allocate

		Medium

		Long

		Short

		Medium

		File allocation table size

		One entry

		One entry

		Large

		Medium

6.80

Free Space Management
Just as allocated space must be managed, so must the unallocated space
To perform file allocation, it is necessary to know which blocks are available
A disk allocation table is needed in addition to a file allocation table

TI 3: Operating Systems and Computer Networks

6.81

Bit Tables
This method uses a vector containing one bit for each block on the disk

Each entry of a 0 corresponds to a free block, and each 1 corresponds to a block in use

Advantages
- works well with any file allocation method
- it is as small as possible

TI 3: Operating Systems and Computer Networks

6.82

Chained Free Portions
The free portions may be chained together by using a pointer and length value in each free portion
Negligible space overhead because there is no need for a disk allocation table
Suited to all file allocation methods

Disadvantages
- leads to fragmentation
- every time you allocate a block you need to read the block first to recover the pointer to the new first free block

before writing data to that block

TI 3: Operating Systems and Computer Networks

6.83

Indexing
Treats free space as a file and uses an index table as it would for file allocation
For efficiency, the index should be on the basis of variable-size portions rather than blocks
This approach provides efficient support for all of the file allocation methods

TI 3: Operating Systems and Computer Networks

6.84

Free Block List

TI 3: Operating Systems and Computer Networks

Each block is assigned a
number sequentially

the list of the numbers
of all free blocks is

maintained in a
reserved portion of the

disk

Depending on the size of
the disk, either 24 or 32

bits will be needed to
store a single block

number

the size of the free
block list is 24 or 32
times the size of the

corresponding bit table
and must be stored on

disk

There are two effective
techniques for storing a

small part of the free
block list in main

memory:

the list can be treated
as a push-down stack

with the first few
thousand elements of
the stack kept in main

memory

the list can be treated
as a FIFO queue, with
a few thousand entries

from both the head
and the tail of the

queue in main memory

6.85

Questions & Tasks
- Is secondary storage management only needed for hard disks? What about an SSD?
- What are advantages and disadvantages of contiguous allocation? When/where can it be used?
- What happens with indexed allocation when the index does not fit into a block?

TI III - Operating Systems and Computer Networks

6.86

UNIX File Management
In the UNIX file system, six types of files are distinguished:

TI 3: Operating Systems and Computer Networks

• contains arbitrary data in zero or more data blocks
Regular, or ordinary

• contains a list of file names plus pointers to associated inodes
Directory

• contains no data but provides a mechanism to map physical devices to file
names

Special

• an interprocess communications facility
Named pipes

• an alternative file name for an existing file
Links

• a data file that contains the name of the file it is linked to
Symbolic links

6.87

Inodes

All types of UNIX files are administered by the OS by
means of inodes

An inode (index node) is a control structure that
contains the key information needed by the operating
system for a particular file

Several file names may be associated with a single
inode

- an active inode is associated with exactly one file
- each file is controlled by exactly one inode

TI 3: Operating Systems and Computer Networks

6.88

FreeBSD Inode and File Structure

TI 3: Operating Systems and Computer Networks

6.89

File Allocation
File allocation is done on a block basis

Allocation is dynamic, as needed, rather than using preallocation

An indexed method is used to keep track of each file, with part of the index stored in the inode for the file

In all UNIX implementations the inode includes a number of direct pointers and three indirect pointers (single,
double, triple)

TI 3: Operating Systems and Computer Networks

6.90

UNIX Directories and Inodes

Directories are structured in a hierarchical tree

Each directory can contain files and/or other
directories

A directory that is inside another directory is
referred to as a subdirectory

TI 3: Operating Systems and Computer Networks

6.91

Volume Structure
A UNIX file system resides on a single logical disk or disk partition and is laid out with the
following elements:

TI 3: Operating Systems and Computer Networks

Boot block

contains code
required to

boot the
operating
system

Superblock

contains
attributes and

information about
the file system

Inode table

collection of
inodes for each

file

Data
blocks

storage space
available for
data files and
subdirectories

6.92

UNIX File Access Control

TI 3: Operating Systems and Computer Networks

6.93

UNIX File Access Control

TI 3: Operating Systems and Computer Networks

6.94

Access Control Lists in UNIX
FreeBSD allows the administrator to assign a list of UNIX user IDs and groups to a file

Any number of users and groups can be associated with a file, each with three protection bits (read, write,
execute)

A file may be protected solely by the traditional UNIX file access mechanism

FreeBSD files include an additional protection bit that indicates whether the file has
an extended ACL

TI 3: Operating Systems and Computer Networks

6.95

Linux Virtual File System (VFS)

Presents a single, uniform file system interface
to user processes

Defines a common file model that is capable of
representing any conceivable file system’s
general feature and behavior

Assumes files are objects that share basic
properties regardless of the target file system or
the underlying processor hardware

TI 3: Operating Systems and Computer Networks

6.96

The Role of VFS within the Kernel

TI 3: Operating Systems and Computer Networks

6.97

Example: Linux VFS/Ext2

The virtual file system is a layer between the
kernel and the file system code

Manages all the different file systems that are
mounted

The real file systems are either built into the
kernel itself or are built as loadable modules

TI 3: Operating Systems and Computer Networks

6.98

Ext2: Inodes
Basic concept of the Ext2 system (and of all Unix file systems) is the structure called inode (index
node)
A file is represented by one inode
The length of files is variable but all inodes are of the same length (128 Byte)

Smaller files are more quickly accessed than larger files
TI 3: Operating Systems and Computer Networks

6.99

Ext2: Directories
A directory is a file which is formatted with a special format - a list of directory entries
Also a directory has an inode

Directory entries are of variable length
File names of varying length are supported

An entry consists of
- Inode number
- Entry length
- Name length
- File name

The first two entries for every directory are always the standard “.” and “..” (“this directory” and “the
parent directory”)
The inode number of the root directory is stored in the super block so the system can access it directly
at any time

TI 3: Operating Systems and Computer Networks

6.100

Ext2: Blocks and Block Groups
A block is the smallest unit that can be allocated on an Ext2 partition

The blocks are grouped into block groups of the same size

If possible, data blocks for a file are allocated in the same group as its inode
Related data is kept physically close, seek time is reduced

Each group stores a copy of critical administrative information
Data security is increased

All block groups have the same size and are stored sequentially
The location of a block group can be derived from its index

TI 3: Operating Systems and Computer Networks

6.101

Ext2: Block Groups
Super block
- Description of basic size and shape of the file system

- information that allows to use and maintain the system

Group descriptors
- Position of block bitmap, inode bitmap and inode table, number of free data blocks, inodes and
directories
- information used when new data blocks are allocated

Copies in all block groups
Only super block and group descriptors in block group 0 are actually used, the remaining copies are only used in case of file

system corruption

TI 3: Operating Systems and Computer Networks

6.102

Ext2: Block Groups

TI 3: Operating Systems and Computer Networks

Block bitmap/
inode bitmap

One bit per block/inode, indicates whether the block/inode is used or
free

 to keep track of allocated blocks and inodes

Inode table A predefined number of inodes

Data blocks Blocks storing the actual data

6.103

Related System Calls (Linux)
int open(const char *pathname, int flags)
- Open file at pathname with options flags and return file descriptor
int close(int fd)
- Close file desciptor fd

ssize_t read(int fd, void *buf, size_t count)
ssize_t write(int fd, const void *buf, size_t count)
- Read/write data at buf with count bytes from/to file descriptor fd
off_t lseek(int fd, off_t offset, int whence)
- Seek, i.e. change current “cursor position”, in file descriptor fd by offset bytes in relation to whence (SEEK_SET,
SEEK_CUR, SEEK_END)

int fcntl(int fd, int cmd)
int fcntl(int fd, int cmd, long arg)
int fcntl(int fd, int cmd, struct flock *lock)
- Performs operation cmd on file descriptor fd, e.g. locking to protects against concurrent access, signaling on I/O, ...
Is this a well-designed interface?

TI 3: Operating Systems and Computer Networks

6.104

Content

1. Introduction and Motivation

2. Subsystems, Interrupts and System Calls

3. Processes

4. Memory

5. Scheduling

6. I/O and File System

7. Booting, Services, and Security

TI 3: Operating Systems and Computer Networks

	TI III: Operating Systems & Computer Networks �I/O and File System
	Content
	Operating System Design and I/O
	Operating System Design and I/O
	Types of I/O Devices
	Alternatives for I/O Organization
	Evolution of the I/O Function
	I/O Related Programming Techniques
	Comparison of I/O Techniques
	Direct Memory Access
	DMA Configurations
	I/O Buffering
	I/O Buffering Implementations
	I/O Buffering Implementations
	I/O Buffering Implementations
	I/O Buffering Implementations
	Questions & Tasks
	Disk Drive as Mass Storage
	Disk Drive as Mass Storage
	I/O Scheduling
	Positioning the Read/Write Heads
	Disk Scheduling Algorithms
	Disk I/O Scheduling Policies
	First-In, First-Out (FIFO)
	Shortest Service Time First (SSTF)
	SCAN
	C-SCAN (Circular SCAN)
	N-Step-SCAN
	FSCAN
	Comparison of Disk Scheduling Algorithms
	Disk Cache
	RAID
	RAID Levels
	RAID Level 0
	RAID Level 1
	RAID Level 2
	RAID Level 3
	RAID Level 4
	RAID Level 5
	RAID Level 6
	UNIX SVR4 I/O
	Questions & Tasks
	Content
	File System Overview
	File System Overview
	File System Overview
	File System Overview
	Minimal User Requirements
	File System Architecture
	Elements of File Management
	File Organization Types
	The Pile
	The Sequential File
	Indexed Sequential File
	Indexed File
	Direct or Hashed File
	Grades of Performance
	Operations Performed on a Directory
	File Directories
	Multi-Level Directories
	Multi-Level Directories
	Hierarchical/Tree-Structured Directory
	File Sharing
	Access Rights
	User Access Rights
	Access Matrix
	Access Control Lists
	Capability Lists
	Questions & Tasks
	Secondary Storage Management
	File Allocation
	Preallocation vs Dynamic Allocation
	Secondary Storage Management
	Methods of File Allocation
	Methods of File Allocation
	Methods of File Allocation
	Methods of File Allocation
	Methods of File Allocation
	File Allocation Methods
	Free Space Management
	Bit Tables
	Chained Free Portions
	Indexing
	Free Block List
	Questions & Tasks
	UNIX File Management
	Inodes
	FreeBSD Inode and File Structure
	File Allocation
	UNIX Directories and Inodes
	Volume Structure
	UNIX File Access Control
	UNIX File Access Control
	�Access Control Lists in UNIX
	Linux Virtual File System (VFS)
	The Role of VFS within the Kernel
	�Example: Linux VFS/Ext2
	Ext2: Inodes
	Ext2: Directories
	Ext2: Blocks and Block Groups
	Ext2: Block Groups
	Ext2: Block Groups
	Related System Calls (Linux)
	Content

