

TI III: Operating Systems & Computer Networks Booting, Services, and Security

Content

- 1. Introduction and Motivation
- 2. Subsystems, Interrupts and System Calls
- 3. Processes
- 4. Memory
- 5. Scheduling
- 6. I/O and File System
- 7. Booting, Services, and Security

Boot Process Overview

Process of starting an operating system

- "Bootstrapping" - simple system is used to start more complex system

Goals:

- -Hardware detection and setup
- -Operating system loading and initialization

Boot Process Overview

Multi-stage process (early stages without OS involvement)

- -System startup
 - Simple hardware initialization performed by BIOS
- -Stage 1 bootloader
 - Continue initialization
 - -Load state 2 bootloader
- Stage 2 bootloader
 - Continue initialization
 - -Load kernel image
- -Kernel
 - Continue initialization
 - Start first process "init"
- -Init
- Start system services, including login shell
- >Only limited resources available at each state

Boot Process Overview

http://duartes.org/gustavo/blog/post/how-computers-boot-up

Booting – System Startup (with classical BIOS)

Power supply switched on → Power supply performs self-test

- Sends Power Good signal to CPU if OK
- 1. CPU Timer chip receives Power Good signal
 - Stops sending reset signals to CPU
- 2. CPU executes ROM BIOS code at **0xFFFF0000**
- 3. BIOS performs basic hardware test
 - Beeps on errors
- 4. BIOS checks for adapters with own ROM BIOS
 - Initializes video adapter
- 5. BIOS runs Power On Self Test (POST)
 - No memory check, if "warm-start"
 - Error messages on non-fatal errors
 - Abort and beep code on fatal error
- 6. BIOS reads system configuration from CMOS
 - Defines in which order to check drives for operating system
- 7. BIOS examines first sector of bootable medium
 - Loads Master Boot Record (MBR)

Booting – Stage 1/2 Bootloader

BIOS transfers control to bootloader

- Windows: NTLDR
- Linux: Linux Loader (LILO) or GRand Unified Bootloader (GRUB)

May offer choices for OS or system parameters to user

Boot loader works in stages

- Work around size limitations (only 446 bytes available in MBR)
- Incrementally add support for loading larger binaries from anywhere on disk
- Commonly two, sometimes three stages ("stage 1.5")
- Last stage of bootloader is powerful enough to load kernel image

Chain loading allows bootloader to pass control to other bootloaders, e.g. GRUB to NTLDR

Master boot record

UEFI/EFI

Today, UEFI (Unified Extensible Firmware Interface) and the predecessor EFI (Extensible Firmware Interface) describe the interface between firmware, components of a computer, and the operating system

Includes Secure Boot

- -allows booting of signed bootloaders only
- -Typically, shim needed for Linux as many mainboard manufacturers only deliver MS signatures

Allows the selection of drivers, exclusion of software components of the OS

Additional capabilities for diagnostics (networking, hardware etc.)

Alternatives: Open Firmware (PowerPC, SPARC), coreboot

(legacy BIOS not supported any longer)

P

EFI specification

Digital Rights Management

Remote maintenance using own network stack -security?

Preboot execution environment

Graphics adapter support

Sandbox mode

Support for HD > 2 TB for booting

CC-BY-SA-2.5, Msikma on en.wikipedia

Booting – Kernel

Bootloader passes control to kernel

Detect/initialize hardware

- -CPU, e.g. on x86, switch from real (8086) to protected mode
 - Enables support for memory > 1MB, virtual memory, process isolation
 - Possibly start-up additional CPUs in multi-processor systems
- -System buses and memory ("north bridge")
- Peripheral buses and devices ("south bridge")
- -May require loading of additional device drivers from disk
 - Problem: Ordering of steps in initialization procedure non-trivial
 - Workaround: Append file system containing drivers to kernel image, use bootloader to load most important drivers into RAM

Start kernel subsystems

-Allocate/initialize core data structures, e.g., process queues, page tables, ...

Setup environment for user processes

- -Mount root file system
- -Start scheduler, enable multi-tasking

Start first user-space process, e.g. /sbin/init in Unix systems

Booting – Init (Unix SysV Init)

SysV Init starts system services according to runlevels:

Typical runlevels:

- Runlevel 0: Halt
- Runlevel 1: Single-user mode
- Runlevel 2: Not used (user-definable)
- Runlevel 3: Full multi-user mode
- Runlevel 4: Not used (user-definable)
- Runlevel 5: Full multi-user mode (GUI login screen)
- Runlevel 6: Reboot
- Vendor-specific variations

Typical system services:

- -System logging daemon
- -Remote Procedure Call (RPC) server
- -Print spooler
- -Mail Transfer Agent (MTA)
- -SNMP daemon
- -SSH server
- -Login shell
- -X Windows System (GUI)

Also performs more complex initialization, e.g. networking

Questions & Tasks

- Do all computers perform booting? Think of different application scenarios.
- -Check the booting process of your computer. Depending on the different platforms you might need to press certain keys during the initialization to see all steps.
- -Why do we sometimes need several stages of booting?
- -Check the story behind UEFI and its implications when it comes to secure boot!

UNIX Daemons

System services on UNIX-derived systems

Typically started at boot time

Process that runs in background

- -Disassociate from console (if any)
- -Fork a child on start-up, then exit
 - ➤init adopts the child
- Set working directory to root directory
- -Close open file descriptors (if any)
- -Set stdin, stdout, and stderr to logfile, console, or /dev/null

➤ May store PID in known file for future interaction

Windows offers services

				06	G Services						-		
					File	Action View	/ Help						
					-	🔿 🗖 🗖	🗟 🔣 📷 🕑 🖻 🖩 H 🗗						
					0	Services (Local)	Name	Description	Status	Startup Type	Log On As		^
							Alicrosoft Edge-Update-Di	Hält ihre Microsoft-Software auf dem ne		Automatic (D	Local Syste		
							Microsoft Edge-Update-Di	Hält ihre Microsoft-Software auf dem ne		Manual	Local Syste		
🚰 Task Manager				-		×	ActiveX Installer (AxInstSV)	Provides User Account Control validation		Manual	Local Syste		
File Options View					Adobe Acrobat Update Serv	Adobe Acrobat Updater keeps your Adob	Running	Automatic	Local Syste				
Processes Performance App history Startup Users	Details Services						Adobe Genuine Monitor Ser	Adobe Genuine Monitor Service	Running	Automatic	Local Syste		
· · · · · · · · · · · · · · · · · ·							Adobe Genuine Software In	Adobe Genuine Software Integrity Service	Running	Automatic	Local Syste		
^		8%	47%	1%	0%		AllJoyn Router Service	Routes AllJoyn messages for the local AllJ		Manual (Trig	Local Service		
Name	Status	CPU	Memory	Disk	Network	Power	App Readiness	Gets apps ready for use the first time a us		Manual	Local Syste		
Client Server Runtime Process		0%	0,8 MB	0 MB/s	0 Mbps	Very I A	Apple Mobile Device Service	Provides the interface to Apple mobile de	Running	Automatic	Local Syste		
Desktop Window Manager		1,0%	44,4 MB	0 MB/s	0 Mbps	Very I	Application Identity	Determines and verifies the identity of an	D	Manual (Trig	Local Service		
> I Local Security Authority Process (4)		0%	6.4 MB	0 MB/s	0 Mbps	Very I	Application Information	Pacificates the running of interactive appli	Kunning	Manual (Irig	Local Syste		
> Carl Legal Service Network Eirstrall (2)		0%	0.0 MAD	O MP/s	OMber	Vend	Application Layer Gateway	Processes installation removal and enu		Manual	Local Syste		
Cocalserviceivolvetworkrinewali (2)		0%	9,0 MD	U IVID/S	U Mbps	very	Application Management	Provides infrastructure support for deplo		Manual	Local System		
Registry		0%	0,8 MB	0 MB/s	0 Mbps	Very I	AssignedAccessManager Se	AssignedAccessManager Service support		Manual (Trig	Local Syste		
Service Host: Clipboard User Service_3c5c5c		0%	1,3 MB	0 MB/s	0 Mbps	Very I	Auto Time Zone Updater	Automatically sets the system time zone.		Disabled	Local Service		
> Service Host: Connected Devices Platform User Se	ervice	0%	1.6 MB	0 MB/s	0 Mbps	Very I	AVCTP service	This is Audio Video Control Transport Pro	Running	Manual (Trig	Local Service		
Carlie Hat DCOM Serve Brown Laurebro		0%	24440	0.140/-	0.14	Maril	Background Intelligent Tran	Transfers files in the background using idl		Manual	Local Syste		
Service Host: DCOM Server Process Launcher		0%	2,4 MB	U IVID/S	0 Mbps	very	Background Tasks Infrastru	Windows infrastructure service that contr	Running	Automatic	Local Syste		
Service Host: DCOM Server Process Launcher		0%	0,4 MB	0 MB/s	0 Mbps	Very I	🖓 Base Filtering Engine	The Base Filtering Engine (BFE) is a servic	Running	Automatic	Local Service		
> Service Host: DCOM Server Process Launcher (4)		0%	8,5 MB	0 MB/s	0 Mbps	Very I	BitLocker Drive Encryption	BDESVC hosts the BitLocker Drive Encrypt		Manual (Trig	Local Syste		
> Service Host: Local Service		0%	0.9 MB	0 MB/s	0 Mbps	Very I	Block Level Backup Engine	The WBENGINE service is used by Windo		Manual	Local Syste		
N Carlie Hat Level Carlie		0.94	0.5 140	0.140/-	0.14	No.	Bluetooth Audio Gateway S	Service supporting the audio gateway rol		Manual (Trig	Local Service		
> Service Host: Local Service		0%	U, 5 MB	U MB/S	UNIDPS	Very I	Bluetooth Support Service	The Bluetooth service supports discovery		Manual (Irig	Local Service		
Service Host: Local Service		0%	1,3 MB	0 MB/s	0 Mbps	Very I	RearchCache	This service saches network content from		Manual (Ing	Local System		
Service Host: Local Service		0%	0,5 MB	0 MB/s	0 Mbps	Very I	Canability Access Manager	Provides facilities for managing LIWP app	Rupping	Manual	Local Syste		
> Service Host: Local Service		0%	0.5 MB	0 MB/s	0 Mbps	Verv	CaptureService 3c5c5c	OneCore Capture Service	Running	Manual	Local Syste		
N I Controller Lond Control		0.0%	24440	0.140/-	0.00		Certificate Propagation	Copies user certificates and root certificat	Running	Automatic (T	Local Syste		
> Service Host: Local Service		0%	2,4 MB	0 MB/s	0 Mbps	Very	Cisco AnyConnect Secure	Cisco AnyConnect Secure Mobility Agent	Running	Automatic	Local Syste		
> Service Host: Local Service		0%	0,8 MB	0 MB/s	0 Mbps	Very I v	Cisco WebEx Productivity T	Keeps your Cisco WebEx software up to d		Manual	Local Syste		
¢						>	Cisco WebEx Update Service	Keeps your Cisco WebEx software up to d		Manual	Local Syste		
Fewer details					End	task	Client License Service (ClipS	Provides infrastructure support for the Mi		Manual (Trig	Local Syste		
							Clipboard User Service_3c5c	This user service is used for Clipboard sce	Running	Manual	Local Syste		~
							Extended & Standard		-				

System Services Example: crond

Periodically runs commands, referred to as "cron jobs" Commands are configured in /etc/crontab:

```
# /etc/crontab: system-wide crontab
# Unlike any other crontab you don't have to run the `crontab'
# command to install the new version when you edit this file.
# This file also has a username field, that none of the other crontabs do.
SHELL=/bin/sh
PATH=/usr/local/sbin:/usr/local/bin:/sbin:/usr/sbin:/usr/bin
MAILTO=staff-simpel2@inf.fu-berlin.de
# m h dom mon dow user
                       command
       * * * root
25 6
                       test -e /usr/sbin/anacron
                                                   run-parts --report /etc/cron.daily
47 6
       * * 7 root
                       test -e /usr/sbin/anacron
                                                    run-parts --report /etc/cron.weekly
52 6
                       test -e /usr/sbin/anacron
                                                   run-parts --report /etc/cron.monthly
       1 * * root
#
#tos: der cron job sollte nicht root-mail zuspammen..
0 4 * * * root /etc/simpel/delayed_update >/dev/null 2>&1
#
# vielleich hilft das gegen eingefrorene maeuse, vv 17.6.02
#0 7 * * * root /etc/init.d/qpm restart > /dev/null 2>&1
```


System Services Example: syslogd

Daemon for local and/or remote message logging Uses Syslog protocol (RFC 3164) to receive messages via UDP or TCP on port 514 Writes messages to /var/log/syslog:

```
Nov 28 01:31:59 vaio syslogd 1.4.1#18: restart.
Nov 28 01:31:59 vaio anacron[4603]: Job `cron.daily' terminated (mailing output)
Nov 28 01:32:00 vaio anacron[4603]: Normal exit (1 job run)
Nov 28 01:36:50 vaio kernel: usb 1-1.1: new high speed USB device using ehci hcd and address 7
Nov 28 01:36:50 vaio kernel: usb 1-1.1: configuration #1 chosen from 1 choice
Nov 28 01:36:50 vaio kernel: usb-storage: device found at 7
Nov 28 01:36:50 vaio kernel: usb-storage: waiting for device to settle before scanning
Nov 28 01:36:55 vaio kernel:
                              Vendor: WDC WD16 Model: 00BB-22GUC0
                                                                          Rev: 0811
                               Type:
Nov 28 01:36:55 vaio kernel:
                                      Direct-Access
                                                                          ANSI SCSI revision: 00
Nov 28 01:36:55 vaio kernel: usb-storage: device scan complete
Nov 28 01:36:55 vaio kernel: SCSI device sda: 312581808 512-byte hdwr sectors (160042 MB)
Nov 28 01:36:55 vaio kernel: sda: test WP failed, assume Write Enabled
Nov 28 01:36:55 vaio kernel: sda: assuming drive cache: write through
Nov 28 01:36:55 vaio kernel: sda: sda1
Nov 28 01:36:55 vaio kernel: sd 0:0:0:0: Attached scsi disk sda
Nov 28 01:37:03 vaio hald: mounted /dev/sda1 on behalf of uid 1000
Nov 28 01:55:40 vaio hald: unmounted /dev/sdal from '/media/TREKSTOR-1' on behalf of uid 1000
Nov 28 01:56:23 vaio kernel: UDF-fs: No VRS found
Nov 28 01:56:23 vaio kernel: Unable to identify CD-ROM format.
```

Separate daemon klogd to log kernel messages

System Services Example: 1pd

Provides printer spooling

Manages (multiple) queues for each connected printer

Controls/schedules print jobs of (multiple) users

Virtual printers may transparently provide different options to real printer

➢Preprocessing, filtering of documents

Virtual Printers

System Services Example: dhcpd

Dynamic Host Configuration Protocol (DHCP, RFC 2131)

Acts as server that manages network information (e.g. IP addresses) for local network

Clients request configuration information at boot time, i.e. upon configuring network interfaces

Effectively provides system service for remote computers

System Services Example: ftpd

File Transfer Protocol (FTP, RFC 959)

Allows remote access to data stored on local file system

-Separate connections for commands and data

System Services Example: ntpd

Network Time Protocol (NTP, RFC 1305)

Synchronizes time of local computer with time servers / other computers

>Example: time.fu-berlin.de

System Services Example: getty

getty:

Opens TTY (terminal typewriter) port and prompts for username ("login:") Upon entry of valid user name, start /bin/login process

login: Authenticate user by querying for password

-Limited number of retries

Set user and group ID and environment variables as specified in /etc/passwd

Effectively drop administrator ("root") privileges

Start shell, e.g. /bin/bash

>Boot process complete, user logged in, *start working!*

Questions & Tasks

-Check the running deamons in your UNIX system – or services if you run Windows. There are quite many ... The operating systems sometimes offer nice tools to view these deamons/services.

CIA Triad: Security Objectives

Confidentiality

-a loss of confidentiality is the unauthorized disclosure of information

Integrity

-a loss of integrity is the unauthorized modification or destruction of information

Availability

-a loss of availability is the disruption of access to or use of information or an information system

The Security Requirements Triad

Additional Concepts

Authenticity

The property of being genuine and being able to be verified and trusted; confidence in the validity of a transmission, a message, or message originator

Verifying that users are who they say they are and that each input arriving at the system came from a trusted source

Accountability

The security goal that generates the requirement for actions of an entity to be traced uniquely to that entity

We must be able to trace a security breach to a responsible party

Systems must keep records of their activities to permit later forensic analysis to trace security breaches or to aid in transaction disputes

Passive Attacks

Learn/use information from system but do not affect

- Eavesdropping and monitoring

Goal: Obtain information

Difficult to detect, since no alteration of data

- -Emphasis is on prevention rather than detection
- Encryption for prevention

Types

- release of message contents
- traffic analysis

Active Attacks

Modify data or create false data

Four categories:

Replay

-first capture data / second retransmit

Masquerade

-pretend to be a different entity

Modification of messages

-alter some portion of a message / delay or reorder message

Denial of service

- -prevent normal use of communications facilities
- -disrupt entire network by disabling the network or by overloading it

Authentication – Password Creation

Library function crypt() encrypts user's password by adding some randomness ("salt")

-Cryptographic hash function

-Based on Data Encryption Standard (DES) algorithm

>Limited key space, brute-force attacks feasible

Authentication – Password Verification

Performed by login parameterized with user name (ID)

Password File

Access Control – Permission Bits

Bit vector per object (e.g. file, directory) encodes:

- Entities (users): Owner, group, other
- Access rights: Read, write, execute ("change into" for directories)
- >Example: rwxr-x---
 - Owner may read, write and execute
 - Owning group may read and execute
 - Others aren't allowed to do anything
- Special bits for advanced features, e.g. SUID big execute as owner
- Subtle semantics: Changing name of a file requires write access to containing directory

More advanced: Access matrix

	File 1	File 2	File 3	File 4	Account 1	Account 2
User A	Own R W		Own R W		Inquiry Credit	
User B	R	Own R W	W	R	Inquiry Debit	Inquiry Credit
User C	R W	R		Own R W		Inquiry Debit

Access Control – Access Control Lists

Permissions bits at times not flexible enough
 Access matrix has scalability issues, is sparsely populated

- Access Control Lists (ACLs):
- Variable number of bit vectors in linked list
- Slight access overhead
- One per required entity
- Need additional semantics
- >What to do if access granted to group but not to specific user?

Access Control – Capabilities

Assign set of capabilities to each entity

≻Example:

-File access (rarely used)

System capabilities:

-Traditional:

-Administrator (root): Can do everything

-User: Can do nothing

-With capabilities:

- Fine grained control
- E.g. access to specific system calls, kernel subsystems

Attack Vector – Directory Traversal

Trick "weak" program to access protected/internal file >Exploits insufficient checking/sanitization of user-supplied file name

Example:

- Documents for student homepages are stored in
 - /web/page.mi.fu-berlin.de/web-home/user_name/
 - E.g. http://page.mi.fu-berlin.de/~userA/index.html is located at /web/page.mi.fu-berlin.de/webhome/userA/index.html

>What happens if an attackers queries the web server for

```
http://page.mi.fu-berlin.de/../../../etc/passwd?
```

≻Defenses:

- -Scan input for illegal character sequences
 - "../" in this examples, but this may be masked as "%2E%2E%2F" (ASCII encoded)
- -Canonization, i.e. convert input into a canonical form
 - Depends on type of input, absolute path (without "../") for path names
- -Limit access of web server process to file system

Countermeasures – Limited Access

System support of limiting view of entire system for specific process

chroot system call changes root of file system as perceived by process

- Process is caught in "chroot jail", cannot break out

Good precaution for processes that
 are self-contained

-deal with untrusted input

Attack Vector – Buffer Overflow

Overwrite flow control information of a process to gain control of the process

-Works for processes that process external data without proper bounds checking

User-space process address space layout:

-Stack for function calls, parameters, local variables -Heap for dynamically managed memory, e.g. with malloc(), ...

Program Stack	High Address				
	STACK SEGMENT				
	Stack grows downward				
Possible "hole" in address space					
t Hann	Heap grows upward				
BSS: zero-filled variables	DATA SEGMENT				
Globals and Static variables (Data)	Low Address				
Executable code (shared)	TEXT SEGMENT				

Attack Vector – Buffer Overflow

Exploit weak bounds checking in buffer operations

Example:

- -Allocate fixed size buffer
- -Copy untrusted data to buffer using strcpy() (instead of strncpy())
- May overwrite control information in stack frame in order to change program flow

Heap-based variants exist

Defense: Use safe versions of library routines, i.e. know how much memory you *have*

Attack Vector – Buffer Overflow

Example:

```
#include <stdio.h>
int main()
{
    char str1[4];
    char str2[4];
    gets(str2);
    printf("str1=%s, str2=%s\n", str1, str2);
}
```


Questions & Tasks

- -Check /etc/passwd on a Unix system and in this context "shadow passwords" why are they needed?
- -Encryption helps in many ways against active and passive attacks. But what about denial of service?

Classification of Threats

Classification by dependency on environment

Related to propagation method, and thus potential targets

Trapdoor/Backdoor

A secret entry point into a program that allows someone to gain access without going through the usual security access procedures

A maintenance hook is a backdoor that programmers use to debug and test programs

Become threats when unscrupulous programmers use them to gain unauthorized access

It is difficult to implement operating system controls for backdoors

Logic Bomb

One of the oldest types of program threat

Code embedded in some legitimate program that is set to "explode" when certain conditions are met

Once triggered a bomb may alter or delete data or entire files, cause a machine halt, or do some other damage

Trojan Horse

Useful, or apparently useful, program or command procedure that contains hidden code that, when invoked, performs some unwanted or harmful function

Trojan horses fit into one of three models:

- -continuing to perform the function of the original program and additionally performing a separate malicious activity
- -continuing to perform the function of the original program but modifying the function to perform malicious activity or to disguise other malicious activity
- -performing a malicious function that completely replaces the function of the original program

Mobile Code

Programs that can be shipped unchanged to a heterogeneous collection of platforms and execute with identical semantics

Transmitted from a remote system to a local system and then executed on the local system without the user's explicit instruction

Often acts as a mechanism for a virus, worm, or Trojan horse to be transmitted to the user's workstation

Takes advantages of vulnerabilities

Popular vehicles for mobile code include Java applets, ActiveX, JavaScript, and VBScript

Multiple-Threat Malware

Infects in multiple ways

Typically the multipartite virus is capable of infecting multiple types of files

A blended attack uses multiple methods of infection or transmission to maximize the speed of contagion and the severity of the attack

An example of a blended attack is the Nimda attack

Viruses

Software that "infects" other programs by modifying them

- -carries instructional code to self duplicate
- -becomes embedded in a program on a computer
- -when the infected computer comes into contact with an uninfected piece of software, a fresh copy of the virus passes into the new program
- -infection can be spread by swapping disks from computer to computer or through a network

A computer virus has three parts:

- -an infection mechanism
- -trigger
- -payload

Virus Classification

There is no universally agreed upon classification scheme for viruses

Classification by target includes the following categories:

Boot sector infector

-infects a master boot record or boot record and spreads when a system is booted from the disk containing the virus

File infector

-infects files that the operating system or shell consider to be executable

Macro virus

-infects files with macro code that is interpreted by an application

Concealment Strategy

A virus classification by concealment strategy includes

Macro Viruses

In the mid 1990's macro viruses became by far the most prevalent type of virus

Macro viruses are particularly threatening because:

- -they are platform independent; e.g. many macro viruses infect Microsoft Word documents or other Microsoft Office documents
- -they infect documents, not executable portions of code
- -they are easily spread; a very common method is by electronic mail
- -file system access controls are of limited use in preventing their spread
- -Thus: new Office version disable macros by default

E-Mail Viruses

The first rapidly spreading e-mail viruses made use of a Microsoft Word macro embedded in an attachment

In 1999 a newer, more powerful version of the e-mail virus appeared

-can be activated merely by opening an e-mail that contains the virus rather than opening an attachment

-the virus uses the Visual Basic scripting language supported by the e-mail package

Worms

A program that can replicate itself and send copies from computer to computer across network connections

Upon arrival the worm may be activated to replicate and propagate again

In addition to propagation the worm usually performs some unwanted function

Actively seeks out more machines to infect and each machine that is infected serves as an automate launching pad for attacks on other machines

Worm Propagation

To replicate itself a network worm uses some sort of network vehicle

Electronic mail facility	 a worm mails a copy of itself to other systems so that its code is run when the e-mail or an attachment is received or viewed
Remote execution capability	 a worm executes a copy of itself on another system either using an explicit remote execution facility or by exploiting a program flaw in a network service to subvert its operations
Remote log-in capability	 a worm logs on to a remote system as a user and then uses commands to copy itself from one system to the other

Worm Propagation Model

Bots

A program that secretly takes over another Internet-attached computer and then uses that computer to launch attacks that are difficult to trace to the bot's creator

-also known as a Zombie or drone

Typically planted on hundreds or thousands of computers belonging to unsuspecting third parties - today millions of "things" used in the context of the Internet of Things, attacks > 1 Tbit/s

Collection of bots acting in a coordinated manner is a botnet

A botnet exhibits three characteristics:

- -the bot functionality
- -a remote control facility
- -a spreading mechanism to propagate the bots and construct the botnet

Rootkit

Set of programs installed on a system to maintain administrator (or root) access to that system

Root access provides access to all the functions and services of the operating system

The rootkit alters the host's standard functionality in a malicious and stealthy way

- -with root access an attacker has complete control of the system and can add or change programs and files, monitor processes, send and receive network traffic, and get backdoor access on demand
- A rootkit hides by subverting the mechanisms that monitor and report on the processes, files, and registries on a computer

Exploits

Quite often today's computers contain several mechanisms and programs defending against malware/viruses etc.

However, malicious code may still be able to take over control by using exploits

Exploit: code that takes advantage of bugs/vulnerabilities of a computer (SW/HW) to cause unintended behavior

Goals: e.g. privilege escalation to execute malicious code, DoS attack

Zero day exploit: cyber attack that occurs on the same day a weakness is discovered

Questions & Tasks

- -Backdoors seem to be a bad idea. Why are they still used?
- -Why do we have the problems of viruses, exploits, DoS attacks etc. at all? Think of technical reasons but also motivations!

Related System Calls (Linux)

uid_t getuid(void)
int setuid(uid_t uid)
-Gets/sets the user ID

int chroot(const char *path)

- Changes root directory of process to **path**

- Access to files outside "chroot jail" not possible afterwards

Library functions:

char *crypt(const char *key, const char *salt)

- Encrypts user's password key using salt (2 bytes) to add randomness
- Returns encrypted password as 13-character string
 - First 2 bytes correspond to **salt**

Content (1)

- 1. Introduction and Motivation
 - Tasks
 - Services
 - Virtual Resources
 - Historical Perspective
 - Examples
 - Tools
- 2. Subsystems, Interrupts and System Calls
 - System Structure
 - Flow of Control
 - System Library
 - POSIX
- 3. Processes
 - Definition
 - Implementation
 - State Model

- 4. Memory
 - Paging & Segmentation
 - Virtual Memory
 - Swap Policies
- 5. Scheduling
 - Types of Scheduling
 - Decision Modes
 - Process Priorities
 - Scheduling Policies
- 6. I/O and File System
 - Devices
 - Buffering and Caching
 - Files and Directories
- 7. Booting, Services, and Security
 - System Startup
 - System Services
 - Security Issues

Content (2)

- 8. Networked Computer & Internet
- 9. Host-to-Network
- 10. Internetworking
- 11. Transport Layer
- 12. Applications
- 13. Network Security
- 14. Example